\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

1000 bang 2

10 tháng 7 2017

đăng ít 1 thôi bn =))

Dài Vãi mik ko bít giải phhương trình sorry nha

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...

18 tháng 10 2020

a) \(\sqrt{2x-1}=\sqrt{5}\)

ĐK : \(x\ge\frac{1}{2}\)

Bình phương hai vế

pt <=> \(2x-1=25\)

    <=> \(2x=26\)

    <=> \(x=13\left(tm\right)\)

Vậy S = { 13 }

b) \(\sqrt{4-5x}=12\)

ĐK : \(x\le\frac{4}{5}\)

Bình phương hai vế

pt <=> \(4-5x=144\)

    <=> \(-5x=140\)

    <=> \(x=-28\left(tm\right)\)

Vậy S = { -28 }

c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]> 

<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)

<=> \(\left|x+3\right|=3x-1\)

<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)

Vậy S = { 2 }

d) \(2\sqrt{x}\le\sqrt{10}\)

ĐK : \(x\ge0\)

Bình phương hai vế

bpt <=> \(4x\le10\)

      <=> \(x\le\frac{10}{4}\)

Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)

18 tháng 10 2020

a) \(ĐKXĐ:x\ge\frac{1}{2}\)

 \(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=3\)

b) \(ĐKXĐ:x\le\frac{4}{5}\)

\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )

\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=-28\)

c) \(ĐKXĐ:x\ge\frac{1}{3}\)

\(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)

thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)

\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)

\(\Leftrightarrow x=\frac{-1}{2}\)(  không thỏa mãn ĐKXĐ )

+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)

thì \(\left|x+3\right|=x+3\)

\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=2\)

 ĐK: \(x\ge\frac{3}{2}\)

 \(\sqrt{2x-3}+3=x\) 

<=> \(\sqrt{2x-3}=x-3\) (đk: \(x\ge3\)

=> \(2x-3=\left(x-3\right)^2\) 

<=> \(2x-3=x^2-6x+9\) 

<=> \(x^2-8x+12=0\) <=> \(\left(x-6\right)\left(x-2\right)=0\) 

=> \(\orbr{\begin{cases}x=6\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{cases}}\) 

Hai câu sau tương tự nhé bn 

\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\)

<=> \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\) 

<=> \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\) 

<=> \(2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) 

<=> \(2x=3=>x=\frac{3}{2}\)

\(\sqrt{x^2-2x+2}=x-2\)

\(\Leftrightarrow\sqrt{\left(x^2-2x+2\right)^2}=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-2x+2=x^2-4x+4\)

\(\Leftrightarrow x^2-x^2-2x+4x=4-2\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

4 tháng 8 2018

a. ĐKXĐ: \(4-5x\ge0\) \(\Leftrightarrow-5x\ge-4\Leftrightarrow5x\le4\Leftrightarrow x\le\dfrac{4}{5}\)

\(\sqrt{4-5x}=12\)

\(\Leftrightarrow4-5x=2\sqrt{3}\)

\(\Leftrightarrow-5x=-4-2\sqrt{3}\)

\(\Leftrightarrow x=\dfrac{-4-2\sqrt{3}}{-5}\)

\(\Leftrightarrow x=\dfrac{4+2\sqrt{3}}{5}\left(KTMĐKXĐ\right)\)

Vậy x không tồn tại

b. \(10-2\sqrt{2x+1}=4\) (1)

\(ĐKXĐ:2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge-\dfrac{1}{2}\)

(1) => \(-2\sqrt{2x+1}=-6\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow2x+1=\sqrt{3}\)

\(\Leftrightarrow2x=\sqrt{3}-1\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}-1}{2}\left(TMĐKXĐ\right)\)

c. \(5-\sqrt{x-1}=7\) (1)

ĐKXĐ: \(x-1\ge0\Leftrightarrow x\ge1\)

(1) <=> \(-\sqrt{x-1}=2\) (vô lí)

Vậy không tồn tại x

9 tháng 8 2018

bài kia làm sai rùi:

a. \(\sqrt{4-5x}=12\) (1)

ĐKXĐ: \(4-5x\ge0\Leftrightarrow x\le\dfrac{4}{5}\)

\(\Leftrightarrow4-5x=144\)

\(\Leftrightarrow5x=-140\)

\(\Leftrightarrow x=-28\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là \(S=\left\{-28\right\}\)

b. \(10-2\sqrt{2x+1}=4\) (1)

ĐKXĐ: \(2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow2\sqrt{2x+1}=6\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow2x+1=9\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là: \(S=\left\{4\right\}\)

c. Ở dưới làm đúng rồi

d. \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\) (1)

ĐKXĐ: \(3x\ge0\Leftrightarrow x\ge0\)

(1) \(\Leftrightarrow10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2\)

\(\Leftrightarrow10+\sqrt{3x}=10+4\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}=-10+10+4\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)

\(\Leftrightarrow3x=96\)

\(\Leftrightarrow x=32\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là: \(S=\left\{32\right\}\)

e. \(\sqrt{x+1}+10=2\sqrt{x+1}-2\) (1)

ĐKXĐ: \(x+1\ge0\Leftrightarrow x\ge-1\)

\(\left(1\right)\Leftrightarrow\sqrt{x+1}-2\sqrt{x+1}=-10-2\)

\(\Leftrightarrow-\sqrt{x+1}=-12\)

\(\Leftrightarrow\sqrt{x+1}=12\)

\(\Leftrightarrow x+1=144\)

\(\Leftrightarrow x=143\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là \(S=\left\{143\right\}\)

f. \(\sqrt{16x+32}-5\sqrt{x+2}=-2\) (1)

ĐKXĐ: \(\left[{}\begin{matrix}\sqrt{16x+32\ge0}\\\sqrt{x+2\ge0}\end{matrix}\right.\left[{}\begin{matrix}x\ge-2\\x\ge-2\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{16\left(x+2\right)}-5\sqrt{x+2}=-2\)

\(\Leftrightarrow4\sqrt{x+2}-5\sqrt{x+2}=-2\)

\(\Leftrightarrow-\sqrt{x+2}=-2\)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=2\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là \(S=\left\{2\right\}\)

18 tháng 8 2020

lên hỏi đáp 247 hỏi cho nhanh !