\(\left(x+2\right)\left(x^2-3x+5\right)=\left(x+2\right)x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

a. (x + 2)(x2 – 3x + 5) = (x + 2)x2

⇔ (x + 2)(x2 – 3x + 5) – (x + 2)x2 = 0

⇔ (x + 2)[(x2 – 3x + 5) – x2] = 0

⇔ (x + 2)(\(x^2\) – 3x + 5 – \(x^2\)) = 0

⇔ (x + 2)(5 – 3x) = 0

⇔ x + 2 = 0 hoặc 5 – 3x = 0

x + 2 = 0 ⇔ x = -2

5 – 3x = 0 ⇔ x = \(\dfrac{5}{3}\)

Vậy phương trình có nghiệm x = -2 hoặc x =\(\dfrac{5}{3}\)

c.\(2x^2\) – x = 3 – 6x

\(2x^2\) – x + 6x – 3 = 0

⇔ (\(2x^2\) + 6x) – (x + 3) = 0

⇔ 2x(x + 3) – (x + 3) = 0

⇔ (2x – 1)(x + 3) = 0

⇔ 2x – 1 = 0 hoặc x + 3 = 0

2x – 1 = 0 ⇔ x = 1/2

x + 3 = 0 ⇔ x = -3

Vậy phương trình có nghiệm x = \(\dfrac{1}{2}\) hoặc x = -3

22 tháng 4 2017

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

20 tháng 1 2019

a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(6x^2-5x+3=2x-9x+6x^2\)

\(6x^2-5x+3-6x^2+9x-2x=0\)

\(2x+3=0\)

\(2x=-3\)

\(x=-\dfrac{3}{2}\)

20 tháng 1 2019

b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)

\(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)

\(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)

\(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)

\(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)

\(12x-92-8\left(4x+1\right)=0\)

⇔ 12x - 92 - 32x - 8 = 0

⇔ -100 - 20x = 0

⇔ 20x = -100

⇔ x = -100 : 20

⇔ x = -5

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

\(\left(x+2\right)\left(x^2-3x+5\right)=\left(x+2\right)x^2\\\left(x+2\right)\left(x^2-3x+5\right)-\left(x+2\right)x^2=0\\ \left(x+2\right)\left(5-3x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+2=0\\5-3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)

\(\dfrac{-7x^2+4}{x^3+1}=\dfrac{5}{x^2-x+1}-\dfrac{1}{x+1}\\ \dfrac{-7x^2+4}{x^3+1}=\dfrac{5\left(x+1\right)-\left(x^2-x+1\right)}{x^3+1}\\ \Rightarrow-7x^2+4=-x^2+6x-4\\ 6x^2+6x-8=0\\ x^2+x-\dfrac{4}{3}=0\\ x^2+x+\dfrac{1}{4}=\dfrac{4}{3}+\dfrac{1}{4}\\ \left(x+\dfrac{1}{2}\right)^2=\dfrac{19}{12}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\sqrt{\dfrac{19}{12}}\\x+\dfrac{1}{2}=-\sqrt{\dfrac{19}{12}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{12}}-\dfrac{1}{2}\\x=-\sqrt{\dfrac{19}{12}}-\dfrac{1}{2}\end{matrix}\right.\)

23 tháng 2 2019

a) Đk : \(x\ne0;\ne1\)

\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)

\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)

\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)

\(\Rightarrow\dfrac{0}{x-1}=0\)

=> Phương trình có vô số nghiệm x

b) Đk : \(x\ne2;x\ne3\)

\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)

\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)

=0

\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)

\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)

=> Phương trình vô nghiệm

c)

\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)

=> PTVN

d) Thôi tự làm đi, câu này dễ :Vvv

e)

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40

\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)

\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

Đặt

\(x^2+6x+7=t\)

Phương trình tương đương

\(\left(t-1\right)\left(t+1\right)=40\)

\(t^2=41\)

\(\)\(t=\pm\sqrt{41}\)

Thay vào tìm x.

24 tháng 2 2019

Thanks ;)

1 tháng 5 2018

help me pls!!!

1 tháng 5 2018

giúp bạn cx hơi hảo tổn đó :))