K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

2tanx - 3cotx - 2 = 0 (Điều kiện cosx ≠ 0 và sinx ≠ 0)

Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

11 tháng 9 2018

2tanx + 3cotx = 4.

Điều kiện: cosx ≠ 0 và sinx ≠ 0. Ta có

2 tan 2   x   –   4 tan x   +   3   =   0

Phương trình vô nghiệm đối với tanx, do đó phương trình đã cho vô nghiệm.

NV
19 tháng 8 2020

3.

ĐKXĐ; ..

\(\sqrt{3}tanx+\frac{1}{tanx}-\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}tan^2x-\left(\sqrt{3}+1\right)tanx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

4.

\(\Leftrightarrow2cos^2x-1-3cosx=2+2cosx\)

\(\Leftrightarrow2cos^2x-5cosx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=3>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

NV
19 tháng 8 2020

1.

\(\Leftrightarrow3\left(2cos^22x-1\right)-\left(1-cos^22x\right)+cos2x-2=0\)

\(\Leftrightarrow7cos^22x+cos2x-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\frac{6}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{1}{2}arccos\left(\frac{6}{7}\right)+k\pi\end{matrix}\right.\)

2.

ĐKXĐ: ...

\(\Leftrightarrow1+cot^2x+3cotx+1=0\)

\(\Leftrightarrow cot^2x+3cotx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)

NV
6 tháng 10 2020

a. ĐKXĐ: ...

\(cot\left(2\pi-\frac{\pi}{3}-3x\right)=tan\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cot\left(-3x-\frac{\pi}{3}\right)=tan\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow tan\left(3x+\frac{5\pi}{6}\right)=tan\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow3x+\frac{5\pi}{6}=2x+\frac{\pi}{3}+k\pi\)

\(\Leftrightarrow...\)

b. ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\frac{cosx.cos2x}{sinx.sin2x}=-1\)

\(\Leftrightarrow cosx.cos2x=-sinx.sin2x\)

\(\Leftrightarrow cosx.cos2x+sinx.sin2x=0\)

\(\Leftrightarrow cosx=0\)

\(\Leftrightarrow x=\frac{\pi}{2}+k\pi\) (ktm)

Vậy pt vô nghiệm

NV
6 tháng 10 2020

c. ĐKXĐ: ...

\(tanx=\frac{3}{tanx}\)

\(\Leftrightarrow tan^2x=3\)

\(\Rightarrow tanx=\pm\sqrt{3}\)

\(\Rightarrow x=\pm\frac{\pi}{3}+k\pi\)

d.

\(2sin^2x+1-2sin^2x=2\)

\(\Leftrightarrow1=2\) (vô lý)

Vậy pt vô nghiệm

18 tháng 6 2019

App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618

9 tháng 4 2017

a) Đặt t = cosx, t ∈ [-1 ; 1] ta được phương trình 2t2 - 3t + 1 = 0 ⇔ t ∈ {1 ; }.

Nghiệm của phương trình đã cho là các nghiệm của hai phương trình sau:

cosx = 1 ⇔ x = k2π và cosx = ⇔ x = + k2π.

Đáp số : x = k2π ; x = + k2π, k ∈ Z.

b) Ta có sin4x = 2sin2xcos2x (công thức nhân đôi), do đó phương trình đã cho tương đương với

2sin2x(1 + √2cos2x) = 0 ⇔