Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)
Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)
\(\Leftrightarrow4x-2-6x-3=4\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)
\(b,ĐKXĐ:x\ne\pm1;-3\)
Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)
\(\Leftrightarrow9x^2+14x+13=0\)
\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)
\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)
Pt vô nghiệm
\(c,ĐKXĐ:x\ne1\)
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
Kết hợp vs ĐKXĐ được x = -1
Vậy pt có nghiệm duy nhất x = -1
làm lần lượt nha(bài nào k bt bỏ qua)
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow-2x-5=4\)
\(\Rightarrow-2x=9\)
\(\Rightarrow x=\frac{9}{-2}\)
ĐKXĐ: \(x\ne\left\{0;-1;-2;-3;-4;-5;-6;-7\right\}\)
\(\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x+7}+\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{x+1}+\frac{1}{x+6}+\frac{1}{x+3}+\frac{1}{x+4}\)
\(\Rightarrow\frac{x+7+x}{x\left(x+7\right)}+\frac{x+5+x+2}{\left(x+2\right)\left(x+5\right)}=\frac{x+6+x+1}{\left(x+1\right)\left(x+6\right)}+\frac{x+4+x+3}{\left(x+3\right)\left(x+4\right)}\)
\(\Rightarrow\frac{2x+7}{x^2+7x}+\frac{2x+7}{x^2+7x+10}=\frac{2x+7}{x^2+7x+6}+\frac{2x+7}{x^2+7x+12}\)
\(\Rightarrow\left(2x+7\right)\left(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\right)=0\)
mà \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\ne0\)
=> 2x + 7 = 0 => x = -7/2
Vậy x = -7/2
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
1) (2x - 3)2 = 4x2 - 8
<=> 4x2 - 12x + 9 = 4x2 - 8
<=> 12x + 9 = -8
<=> 12x = -17
<=> x = 17/12
1) (2x - 3)^2 = 4x^2 - 8
<=> 4x^2 - 12x + 9 = 4x^2 - 8
<=> 4x^2 - 12x + 9 - 4x^2 = -8
<=> -12x + 9 = -8
<=> -12x = -8 - 9
<=> -12x = -17
<=> x = 17/12
2) x - (x + 2)(x - 3) = 4 - x^2
<=> x - x^2 + 3x - 2x + 6 = 4 - x^2
<=> 2x - x^2 + 6 = 4 - x^2
<=> 2x - x^2 + 6 + x^2 = 4
<=> 2x + 6 = 4
<=> 2x = 4 + 6
<=> 2x = 10
<=> x = 5
3) 3x - (x - 3)(x + 1) = 6x - x^2
<=> 3x - x^2 - x + 3x + 3 = 6x - x^2
<=> 5x - x^2 + 3 = 6x - x^2
<=> 5x - x^2 + 3 + x^2 = 6x
<=> 5x + 3 = 6x
<=> 3 = 6x - 5x
<=> 3 = x
4) 3x/4 = 6
<=> 3x = 6.4
<=> 3x = 24
<=> x = 8
5) 7 + 5x/3 = x - 2
<=> 21 + 5x = 3x - 6
<=> 5x = 3x - 6 - 21
<=> 5x = 3x - 27
<=> 5x - 3x = -27
<=> 2x = -27
<=> x = -27/2
6) x + 4 = 2/5x - 3
<=> 5x + 20 = 2x - 15
<=> 5x + 20 - 2x = -15
<=> 3x + 20 = -15
<=> 3x = -15 - 20
<=> 3x = -35
<=> x = -35/3
7) 1 + x/9 = 4/3
<=> x/9 = 4/3 - 1
<=> x/9 = 1/3
<=> x = 3
1 x - 1 + 2 x 2 - 5 x 3 - 1 = 4 x 2 + x + 1 Đ K X Đ : x ≠ 1 ⇔ x 2 + x + 1 x 3 - 1 + 2 x 2 - 5 x 3 - 1 = 4 x - 1 x 3 - 1
⇔ x 2 + x + 1 + 2 x 2 – 5 = 4(x – 1)
⇔ x 2 + x + 1 + 2 x 2 – 5 = 4x – 4 ⇔ 3 x 2 – 3x = 0 ⇔ 3x(x – 1) = 0
⇔ x = 0 (thỏa mãn) hoặc x – 1 = 0 ⇔ x = 1 (loại)
Vậy phương trình có nghiệm x = 0