Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ge\frac{-1}{2}\)
\(x^2-\left(2x+1+2\sqrt{2x+1}+1\right)=0\)
\(\Leftrightarrow x^2-\left(\sqrt{2x+1}+1\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+1}-1\right)\left(x+\sqrt{2x+1}+1\right)=0\)
Vì \(x\ge\frac{-1}{2}\) nên \(x+\sqrt{2x+1}+1>0\)
\(\Rightarrow x-\sqrt{2x+1}-1=0\)
\(\Leftrightarrow x-1=\sqrt{2x+1}\)
\(\Rightarrow x^2-4x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Thử lại chỉ có x = 4 thỏa mãn
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
Bạn kẹp y2 giữa 2 SCP
(x2+x)2 < y2 < (x2+x+2)2
Suy ra y2 =(x2+x+1)2
Đến đây bạn khai triển ra rồi tự làm tiếp.
(Xin lỗi bạn làm trên điện thoại ko viết nhanh được có chỗ nào sai bạn tự sửa.)