Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x-3}=a,\frac{1}{y-4}=b\)
\(hpt\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{3}\\4a-3b=\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{13}{14}\\b=\frac{31}{42}\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{53}{13}\\y=\frac{166}{31}\end{cases}}\)
ĐKXĐ \(\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x-2}=a\\\frac{1}{y-1}=b\end{cases}\left(a;b\ne0\right)}\)
Hệ trở thành \(\hept{\begin{cases}a+b=2\\2a-3b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a+2b=4\\2a-3b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5b=3\\a+b=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{3}{5}\\a=\frac{7}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2}=\frac{7}{5}\\\frac{1}{y-1}=\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=\frac{5}{7}\\y-1=\frac{5}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{19}{7}\\y=\frac{8}{3}\end{cases}}\left(TmDKXD\right)\)
Đặt m = 1 / x - 3 và n = 1/y - 4
Khi đó ta có hệ m + n = 5/3
4 x x - 3 x n = 3/2
....Bạn tự giải tiếp nhé
ĐK \(x\ge0\)
Đặt \(x=a,x+1=b\)
\(PT\Leftrightarrow a^4+b^4=\left(a+b\right)^4\)
<=> 4a3b+6a2b2+4ab3=0
<=> ab(2a2+3ab+2b2)=0
=>ab=0 (vì 2a2+3ab+2b2>0)
=>\(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy.............................
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x-1+2}{x-1}+\frac{3\left(y+2\right)-6}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1+\frac{2}{x-1}+3-\frac{6}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x-1}-\frac{6}{y+2}=3\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\)
đặt \(\left\{{}\begin{matrix}a=\frac{1}{x-1}\\b=\frac{1}{y+2}\end{matrix}\right.\) ta có : \(\left\{{}\begin{matrix}2a-6b=3\\2a-5b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=6b+3\\b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{9}{2}\\b=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=\frac{9}{2}\\\frac{1}{y+2}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=\frac{2}{9}\\y+2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{11}{9}\\y=-1\end{matrix}\right.\)
Đặt \(\dfrac{1}{y-1}=a\), hpt tở thành
\(\left\{{}\begin{matrix}\dfrac{5}{x+1}+a=10\\\dfrac{1}{x-2}+3a=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15}{x+1}+3a=30\left(1\right)\\\dfrac{1}{x-1}+3a=18\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)-\left(2\right)\), ta được:
\(\dfrac{15}{x+1}-\dfrac{1}{x-1}=12\\ \Leftrightarrow\dfrac{15x-15-x-1}{\left(x-1\right)\left(x+1\right)}=12\\ \Leftrightarrow12x^2-12=14x-16\\ \Leftrightarrow12x^2-14x+4=0\\ \Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Với \(x=\dfrac{1}{2}\Leftrightarrow\dfrac{10}{3}+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{10y-7}{3\left(y-1\right)}=10\)
\(\Leftrightarrow30y-30=10y-7\Leftrightarrow y=\dfrac{23}{20}\)
Với \(x=\dfrac{2}{3}\Leftrightarrow3+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{1}{y-1}=7\Leftrightarrow7y-7=1\Leftrightarrow y=\dfrac{8}{7}\)
Vậy \(\left(x;y\right)=\left\{\left(\dfrac{1}{2};\dfrac{23}{20}\right);\left(\dfrac{2}{3};\dfrac{8}{7}\right)\right\}\)
Đặt m = x - 1 .Điều kiện : m ≥ 0, x ≥ 1
Ta có : x - x - 1 -3 = 0 ⇔ (x -1) - x - 1 -2 =0
⇔ m 2 -m - 2 =0
Phương trình m 2 -m - 2 = 0 có hệ số a = 1, b = -1 , c = -2 nên có dạng
a – b + c = 0
Suy ra : m 1 = -1 (loại) , m 2 = -(-2)/1 = 2
Với m =2 ta có: x - 1 =2 ⇒ x -1 =4 ⇔ x =5
Giá trị của x thỏa mãn điều kiện bài toán
Vậy phương trình đã cho có 1 nghiệm : x=5