K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

S80=1+2+...+160

=>S80=12880

S2014=1+2+...+4028

=>S2014=2029105

đúng k pnhaha sai thì sửa xem mk sai chỗ nào nhé

9 tháng 7 2019

Với t = 1, ta có s = 50.t - 8 = 50.1-8 = 42 (km)

Với t = 2, ta có s = 50.t - 8 = 50.2-8 = 92 (km)

Với t = 3, ta có s = 50.t - 8 = 50.3-8 = 142 (km)

Với t = 4, ta có s = 50.t - 8 = 50.4-8 = 92 (km)

.......

s là hàm số của t vì đại lượng s phụ thuộc vào đại lượng thay đổi t và với mỗi giá trị của t ta chỉ xác định được một giá trị tương ứng của s.

3 tháng 2 2019

Với t = 1, ta có s = 50.t - 8 = 50.1-8 = 42 (km)

Với t = 2, ta có s = 50.t - 8 = 50.2-8 = 92 (km)

Với t = 3, ta có s = 50.t - 8 = 50.3-8 = 142 (km)

Với t = 4, ta có s = 50.t - 8 = 50.4-8 = 92 (km)

.......

s là hàm số của t vì đại lượng s phụ thuộc vào đại lượng thay đổi t và với mỗi giá trị của t ta chỉ xác định được một giá trị tương ứng của s.

17 tháng 1 2021

cho mình hỏi

Bài 2: 

Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)

NV
23 tháng 6 2019

\(y=\frac{1}{9+4\sqrt{5}}=\frac{1}{\left(\sqrt{5}+2\right)^2}\)

\(\Rightarrow N=\frac{1}{\left(\sqrt{5}-2\right)^2}-\frac{3}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}+\frac{2}{9+4\sqrt{5}}\)

\(=\frac{1}{9-4\sqrt{5}}+\frac{2}{9+4\sqrt{5}}-3=\frac{9+4\sqrt{5}+18-8\sqrt{5}}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}-3=24-4\sqrt{5}\)

\(S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2+y^2+x^2y^2+1+x^2y^2-1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+x^2y^2-1\)

\(=\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2-1\)

\(=2005^2-1\)

\(\Rightarrow S=\pm\sqrt{2005^2-1}\)

NV
23 tháng 6 2019

c/

Giả sử \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\)

\(\Leftrightarrow\sqrt[3]{3+\sqrt[3]{3}}-\sqrt[3]{3}< \sqrt[3]{3}-\sqrt[3]{3-\sqrt[3]{3}}\)

\(\Leftrightarrow\frac{\sqrt[3]{3}}{\sqrt[3]{\left(3+\sqrt[3]{3}\right)^2}+\sqrt[3]{9+3\sqrt[3]{3}}+\sqrt[3]{9}}< \frac{\sqrt[3]{3}}{\sqrt[3]{9}+\sqrt[3]{9-3\sqrt[3]{3}}+\sqrt[3]{\left(3-\sqrt[3]{3}\right)^2}}\)

\(\Leftrightarrow\sqrt[3]{\left(3+\sqrt[3]{3}\right)^2}+\sqrt[3]{9+3\sqrt[3]{3}}+\sqrt[3]{9}>\sqrt[3]{9}+\sqrt[3]{9-3\sqrt[3]{3}}+\sqrt[3]{\left(3-\sqrt[3]{3}\right)^2}\)

\(\Leftrightarrow\sqrt[3]{\left(3+\sqrt[3]{3}\right)^2}+\sqrt[3]{9+3\sqrt[3]{3}}>\sqrt[3]{9-3\sqrt[3]{3}}+\sqrt[3]{\left(3-\sqrt[3]{3}\right)^2}\) (1)

Ta có: \(\left\{{}\begin{matrix}\sqrt[3]{9+3\sqrt[3]{3}}>\sqrt[3]{9-3\sqrt[3]{3}}\\\sqrt[3]{\left(3+\sqrt[3]{3}\right)^2}>\sqrt[3]{\left(3-\sqrt[3]{3}\right)^2}\end{matrix}\right.\)

Nên (1) đúng

Vậy BĐT ban đầu đúng

16 tháng 7 2020

Oh :>

16 tháng 7 2020

Sai rồi, cách này chỉ sử dụng cho vế bên tay phải có chứa ẩn x thôi. Hãy giải theo kiểu lớp 6,7

Thân!