Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5
a) A = -x³ + 6x² - 12x + 8
= -x³ + 3.(-x)².2 - 3.x.2² + 2³
= (-x + 2)³
= (2 - x)³
Thay x = -28 vào A ta được:
A = [2 - (-28)]³
= 30³
= 27000
b) B = 8x³ + 12x² + 6x + 1
= (2x)³ + 3.(2x)².1 + 3.2x.1² + 1³
= (2x + 1)³
Thay x = 1/2 vào B ta được:
B = (2.1/2 + 1)³
= 2³
= 8
Bài 6
a) 11³ - 1 = 11³ - 1³
= (11 - 1)(11² + 11.1 + 1²)
= 10.(121 + 11 + 1)
= 10.133
= 1330
b) Đặt B = x³ - y³ = (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + 3xy)
= (x - y)[(x - y)² + 3xy]
Thay x - y = 6 và xy = 9 vào B ta được:
B = 6.(6² + 3.9)
= 6.(36 + 27)
= 6.63
= 378
d, PT \(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)-8=x\left(x^3+1\right)-\left(x-4\right)\left(5x+1\right)\)
\(\Leftrightarrow x^4-x^2-4x^2+4-8=x^4+x-5x^2+20x-x+4\)
\(\Leftrightarrow x^4-x^2-4x^2+4-8-x^4-x+5x^2-20x+x-4=0\)
\(\Leftrightarrow-8-20x=0\)
\(\Leftrightarrow x=-\dfrac{8}{20}=-\dfrac{2}{5}\)
Vậy ....
( đoạn kia mk nghĩ là x -2 và x + 2 :vvv )
`a)(x-1)(x^2+x+1)`
`=x^3+x^2+x-x^2-x-1`
`=x^3-1`
`b)(x^3+x^2y+xy^2+y^3)(x-y)`
`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`
`=x^4-y^4`
a) VT`=(x-1)(x^2+x+1)`
`=x^3 +x^2 +x -x^2-x-1 `
`=x^3-1=` VP.
b) VT `=(x^3+x^2y+xy^2+y^3)(x-y)`
`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`
`=x^4-y^4=` VP.
a: =(x-1)^3
b: =(-2x+1)^3
c: =x^3-3x^2y+3xy^2-y^3
=(x-y)^3
a) `(x^3-x^2)/(x^3-2x^2+x)`
`=(x^2(x-1))/(x(x-1)(x-1))`
`=x/(x-1)`
`=>` 2 phân thức bằng nhau.
b) `(x^2+2x+1)/(2x^2-2)`
`=((x+1)(x+1))/(2(x+1)(x-1))`
`=(x+1)/(2(x-1))`
`=(x+1)/(2x-2)`
`=>` 2 phân thức bằng nhau
a) Ta có: \(\dfrac{x^3-x^2}{x^3-2x^2+x}\)
\(=\dfrac{x^2\left(x-1\right)}{x\left(x^2-2x+1\right)}\)
\(=\dfrac{x\cdot\left(x-1\right)}{\left(x-1\right)^2}=\dfrac{x}{x-1}\)
b) Ta có: \(\dfrac{x^2+2x+1}{2x^2-2}\)
\(=\dfrac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+1}{2x-2}\)
a)
\(x^3+\left(x-5\right)\left(x+8\right)=2x^2-37\\ \Leftrightarrow x^3+x^2+3x-40=2x^2-37\\ \Leftrightarrow x^3-x^2+3x-3=0\\ \Leftrightarrow x^2\left(x-3\right)+3\left(x-3\right)=0\\ \Leftrightarrow\left(x^2+3\right)\left(x-3\right)=0\)
Vì \(x^2+3\ge3>0\Rightarrow x-3=0\\ \Leftrightarrow x=3\)
b)
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\\ \Leftrightarrow\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt \(x^2+x=y\)
\(\Rightarrow y\left(y-2\right)=24\\ \Leftrightarrow y^2-2y+1=25\\ \Leftrightarrow\left(y-1\right)^2=25\\ \Leftrightarrow\left[{}\begin{matrix}y-1=5\\y-1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}y=6\\y=-4\end{matrix}\right.\)
Nếu y = 6
\(\Rightarrow x^2+x=6\\ \Leftrightarrow x^2+x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\ \Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Nếu y = -4
\(\Rightarrow x^2+x=-4\\ \Leftrightarrow x^2+x+\dfrac{1}{4}=-4+\dfrac{1}{4}\\ \Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=-\dfrac{15}{4}\)
Mà \(\left(x+\dfrac{1}{.2}\right)^2\ge0>-\dfrac{15}{4}\)
`=> Loại`
c) Vế còn lại là bao nhiêu?
a) \(x^3+2\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)=x^3+x-4-\left(x-7\right)\).
\(\Leftrightarrow x^3+2\left(x^2-2x+1\right)-2\left(x^2-1\right)=x^3+x-4-x+7\)
\(\Leftrightarrow x^3+2x^2-4x+2-2x^2+2=x^3+3\)
\(\Leftrightarrow x^3-4x+4=x^3+3\)
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{4}\right\}\)
b) \(2\left(x-3\right)+1=2\left(x+1\right)-9\)
\(\Leftrightarrow2x-6+1=2x+2-9\)
\(\Leftrightarrow2x-5=2x-7\)
\(\Leftrightarrow2=0\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
c) \(3\left(x+1\right)\left(x-1\right)-5=3x^2+2\)
\(\Leftrightarrow3\left(x^2-1\right)-5=3x^2+2\)
\(\Leftrightarrow3x^2-3-5=3x^2+2\)
\(\Leftrightarrow3x^2-8=3x^2+2\)
\(\Leftrightarrow0=10\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
a)
Trường hợp 1: \(x^3+1\ge0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\ge0\)(điều kiện phá dấu giá trị tuyệt đối)
Bất phương trình đã cho tương đương với: \(x^3+1\ge x+1\Leftrightarrow\left(x+1\right)\left(x^2-x\right)\ge0\Leftrightarrow x\left(x-1\right)\left(x+1\right)\ge0\)
\(x\in\left\{0;-1;1\right\}\)là các nghiệm của bất phương trình trên
Nếu \(x\notin\left\{-1;0;1\right\}\)thì suy ra\(\orbr{\begin{cases}x+1>0>x>x-1\\x+1>x>x-1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}-1< x< 1\\x>1\end{cases}}\)thỏa mãn điều kiện phá dấu.
Do đó tập nghiệm của bất phương trình trong trường hợp này là \(S=\left\{x\ge-1\right\}\)
Trường hợp 2: \(x^3+1< 0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)< 0\)(điều kiện phá dấu giá trị tuyệt đối)
Bất phương trình đã cho tương đương với \(-x^3-1\ge x+1\Leftrightarrow\left(x+1\right)\left(-x^2+x-2\right)\ge0\Leftrightarrow\left(x+1\right)^2\left(2-x\right)\ge0\)
Do \(\left(x+1\right)^2\ge0\)nên \(2-x\ge0\Leftrightarrow x\le2\)không thỏa mãn điều kiện phá dấu giá trị tuyệt đối
Vậy tập nghiệm của bất phương trình trên là \(S=\left\{x\ge-1\right\}\)
Hiện tại không tiện nên mình chỉ gõ được đến đây thôi nhé. Có chi bạn inbox để mình giải bài b) cho