\(\left|x^2-2x-8\right|< 2x\)

b.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

c) Đặt \(t=\sqrt{\left(x-3\right)\left(8-x\right)}\left(t\ge0\right)=\sqrt{-x^2+11x-24}\Rightarrow t^2-2=-x^2+11x-26\)

\(\left(1\right)\Rightarrow t\ge t^2-2\Leftrightarrow t^2-t-2\le0\Leftrightarrow-1\le t\le2\Rightarrow0\le t\le2\Rightarrow0\le-x^2+11x-24\le4\Leftrightarrow\left\{{}\begin{matrix}3\le x\le8\\\left[{}\begin{matrix}x\le4\\x\ge7\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\le x\le4\\7\le x\le8\end{matrix}\right.\)

Vậy tập nghiệm của bpt là \([3;4]\cup[7;8]\)

11 tháng 4 2020

a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)

\(\Leftrightarrow x>-1\)

Nghiệm của $VT(*)$ là $S=(-1;+\infty)$

b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$

$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:

- + -4 0 1 + - - + 0 0 0 x VT(*)

Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$

11 tháng 4 2020

Khách? Khi mà

4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

19 tháng 3 2020

Giúp mình hoàn thành các bài tập này với ạ.Cảm ơn rất nhìuuuuuuu @@@

19 tháng 3 2020

@Akai Haruma

23 tháng 3 2020
https://i.imgur.com/SmYpZ8d.jpg
23 tháng 3 2020
https://i.imgur.com/D95iizc.jpg