\(\frac{x-1}{2x-1}\)\(\ge\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2021

b.

\(\dfrac{x-1}{2x-1}-1\ge0\Leftrightarrow\dfrac{-x}{2x-1}\ge0\) \(\Rightarrow0\le x< \dfrac{1}{2}\)

c.

\(\dfrac{2}{x-6}-\dfrac{1}{x-8}>0\Leftrightarrow\dfrac{2\left(x-8\right)-\left(x-6\right)}{\left(x-6\right)\left(x-8\right)}>0\)

\(\Leftrightarrow\dfrac{x-10}{\left(x-6\right)\left(x-8\right)}>0\Rightarrow\left[{}\begin{matrix}6< x< 8\\x>10\end{matrix}\right.\)

6 tháng 5 2017

a) điều kiện : x-1\(\ne0\)

\(\frac{1}{x-1}>\frac{1}{2}\Rightarrow\frac{1\cdot2}{\left(x-1\right)\cdot2}>\frac{1\left(x-1\right)}{2\left(x-1\right)}\Leftrightarrow2>x-1\Leftrightarrow-x>-1-2\Leftrightarrow-x>-3\)

\(\Leftrightarrow x< 3\)

b) \(\frac{2x+3}{-2}< \frac{3}{-2}\Leftrightarrow2x+3>3\Leftrightarrow2x>3-3\Leftrightarrow2x>0\Leftrightarrow x>0\)

c) điều kiện :\(x\ne0\)

\(\frac{2x-1}{x}< \frac{1+x}{x}\Leftrightarrow2x-1< 1+x\Leftrightarrow2x-x< 1+1\Leftrightarrow x< 2\)

1 tháng 5 2019

nhiều thế

a) \(\frac{5x-2}{2}\ge\frac{3-x}{3}\Leftrightarrow\frac{3\left(5x-2\right)}{6}\ge\frac{2\left(3-x\right)}{6}\Leftrightarrow15x-6\ge6-2x\Leftrightarrow x\ge\frac{12}{17}\)

0 [ 12/17

17 tháng 2 2018

b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)

=> \(6x-4\ge5x+8\)

=> \(x-12\ge0\)

=> \(x\ge12\)

bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)

=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)

=> \(44-8x>18-6x\)

=> \(x< 13\)

Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)

17 tháng 2 2018

a, \(\frac{x^2+x^2-4}{x\left(x-2\right)}>2\) (Đk : \(x\ne\left(0;2\right)\))

=> \(2x^2-4>2x^2-4x\)

=> \(4x-4=4\left(x-1\right)>0\)

=> \(x>1\)(t/m) 

11 tháng 6 2017

1)

a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)

(đk:x khác \(\frac{1}{2}\))

\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)

Vậy x=\(\frac{25}{7}\)

b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)

(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))

\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)

Vậy x=4

2)

\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)

\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)

\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

19 tháng 6 2020

a) \(\frac{1-2x}{4}-2< \frac{1-5x}{8}+x\)

\(\Leftrightarrow\frac{2\left(1-2x\right)}{8}-\frac{16}{8}< \frac{1-5x}{8}+\frac{8x}{8}\)

\(\Leftrightarrow2-4x-16< 1-5x+8x\)

\(\Leftrightarrow-4x-14< 1-3x\)

\(\Leftrightarrow-x< 15\)

\(\Leftrightarrow x>-15\)

Vậy bất phương trình có tập nghiệm là: S ={x| x > -15}

b) \(\frac{1-x}{3}< \frac{x+4}{2}\)

\(\Leftrightarrow2\left(1-x\right)< 3\left(x+4\right)\)

\(\Leftrightarrow2-2x< 3x+12\)

\(\Leftrightarrow-5x< 10\)

\(\Leftrightarrow x>-2\)

Vậy bất phương trình có tập nghiệm là: S ={x| x > -2}

c) \(\frac{2x-3}{2}>\frac{8x-11}{6}\)

\(\Leftrightarrow3\left(2x-3\right)>8x-11\)

\(\Leftrightarrow6x-9>8x-11\)

\(\Leftrightarrow-2x>-2\)

\(\Leftrightarrow x< 1\)

Vậy bất phương trình có tập nghiệm là: S ={x| x < 1}

19 tháng 6 2020

thansk you nha :)

16 tháng 8 2019

Ôn tập: Bất phương trình bậc nhất một ẩnÔn tập: Bất phương trình bậc nhất một ẩn