\(\frac{x+2}{98}+\frac{x+3}{97}>\:\frac{x+4}{96}+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

a) BPT <=> \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)>\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)

<=> \(\frac{x+100}{98}+\frac{x+100}{97}>\frac{x+100}{96}+\frac{x+100}{95}\)

<=> \(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)>0\)

\(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0\)

<=> x + 100 < 0

<=> x < -100

b) BPT <=> \(\left(\frac{x-10}{5}-1\right)+\left(\frac{x-9}{6}-1\right)< \left(\frac{x-8}{7}-1\right)+\left(\frac{x-7}{8}-1\right)\)

<=> \(\frac{x-15}{5}+\frac{x-15}{6}< \frac{x-15}{7}+\frac{x-15}{8}\)

<=> \(\left(x-15\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)< 0\)

\(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}>0\)

<=> x - 15 < 0

<=> x < 15

2 tháng 2 2017

(x+1)/99+(x+2)/98+(x+3)/97=(x+4)/96+(x+5)/95+(x+6)/94

[(x+1)/99 +1]+[(x+2)/98 +1]+[(x+3)/97 +1]-3=[(x+4)/96 +1]+[(x+5)/95 +1]+[(x+6)/94 +1]-3

[(x+1+99)/99+(x+2+98)/98+(x+3+97)/97]-3=[(x+4+96)/96+(x+5+95)/95+(x+6+94)/94]-3

(x+100)/99+(x+100)/98+(x+100)/97=(x+100)/96+(x+100)/95+(x+100)/94

(x+100)(1/99+1/98+1/97)=(x+100)(1/96+1/95+1/94)

(x+100)(1/99+1/98+1/97)-(x+100)(1/96+1/95+1/94)=0

(x+100)(1/99+1/98+1/97-1/96-1/95-1/94)=0

Ma : 1/99+1/98+1/97-1/96-1/95-1/94 \(\ne\)0

=>x+100=0

=>x=-100

k mk nha khong hieu noi mk nha.

2 tháng 2 2017

1/3x-1/2=(3/5-4x)15/7

1/3x-1/2=9/7-60/7x

1/3x+60/7x=1/2+9/7

187/21x=25/14

x=75/374

k mk nha ban.

Câu 6. Giải các phương trình sau: a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\) Câu 7. Giải các phương trình sau: a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\) c,...
Đọc tiếp

Câu 6. Giải các phương trình sau:

a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\)

Câu 7. Giải các phương trình sau:

a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)

c, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\); d, \(\frac{201-6}{99}+\frac{203-6}{97}=\frac{205-x}{95}+3=0\)

e, \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\); f, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

g, \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\); h, \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

i, \(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\);

1
29 tháng 3 2020

Câu 6 :

a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)

=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)

=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)

=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)

=> \(15x+10x+x-1=15-9x+1-2x\)

=> \(15x+10x+x-1-15+9x-1+2x=0\)

=> \(37x-17=0\)

=> \(x=\frac{17}{37}\)

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)

Bài 7 :

a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

=> \(x-23=0\)

=> \(x=23\)

Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)

c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)

=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

=> \(x+2005=0\)

=> \(x=-2005\)

Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)

e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)

=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)

=> \(x-100=0\)

Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)

7 tháng 1 2016

a) \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)

=> \(\frac{x+2+98}{98}+\frac{x+3+97}{97}=\frac{x+4+96}{96}+\frac{x+5+95}{95}\)

=> \(\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)

=> \(\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\)

=> \(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)

Ta có : \(\frac{1}{98}+\frac{1}{97}\ne\frac{1}{96}+\frac{1}{95}\) => \(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)

=> \(x+100=0\)

=> \(x=-100\)

13 tháng 1 2016

Nhiều thế bạn tách từng câu ra mik giải cho (olm ko dc trừ điểm câu này của e)

13 tháng 1 2016

Phần b bạn tự làm nhé, chỉ cần quy đồng lên lấy MC = 105 là được mà

Phần a mình giải ntn:

PT \(\Leftrightarrow\) \(\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)

\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)

\(\Leftrightarrow\)\(x+100=0\)

\(\Leftrightarrow x=-100\)

 

b, \(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)

     \(\frac{x+200}{99}+\frac{x+200}{98}=\frac{x+200}{97}+\frac{x+200}{96}\)

   \(\frac{x+200}{99}+\frac{x+200}{98}-\frac{x+200}{97}-\frac{x+200}{96}=0\)

\(\left(x+200\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)

\(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\)

==> x+200=0

<=>x=-200

Vậy nghiệm của phương trình là x=-200

c,  \(\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)

      \(\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)

\(\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)

mà  \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)

==>200-x=0

<=>x=200

vậy nghiệm của pt là x=200

NV
22 tháng 4 2020

\(\Leftrightarrow\frac{x+8}{92}+1+\frac{x+7}{93}+1+\frac{x+6}{94}+1\ge\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1\)

\(\Leftrightarrow\frac{x+100}{92}+\frac{x+100}{93}+\frac{x+100}{94}\ge\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}\)

\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{92}-\frac{1}{98}+\frac{1}{93}-\frac{1}{97}+\frac{1}{94}-\frac{1}{96}\right)\ge0\)

\(\Leftrightarrow\left(x+100\right)\left(\frac{6}{92.98}+\frac{4}{93.97}+\frac{2}{94.96}\right)\ge0\)

\(\Leftrightarrow x+100\ge0\Rightarrow x\ge-100\)