\(\frac{2x+1}{x+1}\le1\)                       ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

a) ĐKXĐ : \(x\ne1\)

\(\frac{2x+1}{x+1}\le1\)

\(\Leftrightarrow\frac{2x+1}{x+1}-1\le0\)

\(\Leftrightarrow\frac{2x+1-x-1}{x+1}\le0\)

\(\Leftrightarrow\frac{x}{x+1}\le0\)

+) \(\hept{\begin{cases}x\ge0\\x+1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le-1\end{cases}}}\)( vô lí )

+) \(\hept{\begin{cases}x\le0\\x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge-1\end{cases}\Leftrightarrow}-1\le x\le0}\)

Vậy .........

18 tháng 8 2020

b) ĐKXĐ : x khác 0

\(\Leftrightarrow\frac{3x-5}{x}\le2\)

\(\Leftrightarrow\frac{3x-5}{x}-2\le0\)

\(\Leftrightarrow\frac{x-5}{x}\le0\)

\(\Leftrightarrow0< x\le5\)

c) ĐKXĐ : x khác 5 ; 1

 \(\frac{x-2}{x-5}-\frac{3}{x-1}< 1\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)-3\left(x-5\right)-\left(x-5\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)}< 0\)

\(\Leftrightarrow\frac{x^2-x-2x+2-3x+15-\left(x^2-x-5x+5\right)}{\left(x-5\right)\left(x-1\right)}< 0\)

\(\Leftrightarrow\frac{x^2-6x+17-x^2+6x-5}{\left(x-5\right)\left(x-1\right)}< 0\)

\(\Leftrightarrow\frac{12}{\left(x-5\right)\left(x-1\right)}< 0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)< 0\)

\(\Leftrightarrow1< x< 5\)

d) ĐKXĐ : x khác 0

\(x+\frac{6}{x}< 7\)

\(\Leftrightarrow\frac{x^2-7x+6}{x}< 0\)

\(\Leftrightarrow\frac{x^2-7x+\frac{49}{4}-\frac{25}{4}}{x}< 0\)

\(\Leftrightarrow\frac{\left(x-\frac{7}{2}\right)^2-\frac{25}{4}}{x}< 0\)

\(\Leftrightarrow\frac{\left(x-6\right)\left(x-1\right)}{x}< 0\)

Bạn tự giải nốt ra nha  

1 tháng 5 2019

nhiều thế

a) \(\frac{5x-2}{2}\ge\frac{3-x}{3}\Leftrightarrow\frac{3\left(5x-2\right)}{6}\ge\frac{2\left(3-x\right)}{6}\Leftrightarrow15x-6\ge6-2x\Leftrightarrow x\ge\frac{12}{17}\)

0 [ 12/17

Bài 1:

a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)

\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)

\(\Leftrightarrow-5=0\)(vl)

Vậy: \(x\in\varnothing\)

b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)

hay x=1

Vậy: x=1

c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)

\(\Leftrightarrow2x-72=0\)

\(\Leftrightarrow2\left(x-36\right)=0\)

mà 2>0

nên x-36=0

hay x=36

Vậy: x=36

d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)

\(\Leftrightarrow120x+36=56-64x\)

\(\Leftrightarrow120x+36-56+64x=0\)

\(\Leftrightarrow184x-20=0\)

\(\Leftrightarrow184x=20\)

hay \(x=\frac{5}{46}\)

Vậy: \(x=\frac{5}{46}\)

e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)

\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)

\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)

\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)

\(\Leftrightarrow-23x+29=0\)

\(\Leftrightarrow-23x=-29\)

hay \(x=\frac{29}{23}\)

Vậy: \(x=\frac{29}{23}\)

f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)

\(\Leftrightarrow2x+8-10x-50-25=0\)

\(\Leftrightarrow-8x-67=0\)

\(\Leftrightarrow-8x=67\)

hay \(x=\frac{-67}{8}\)

Vậy: \(x=\frac{-67}{8}\)

g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)

\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)

\(\Leftrightarrow10-5x-8x-8+12x-30=0\)

\(\Leftrightarrow-x-28=0\)

\(\Leftrightarrow-x=28\)

hay x=-28

Vậy: x=-28

h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)

\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(x\in R\)

Bài 2:

a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)

b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)

c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)

\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: Tập nghiệm S={-3}

d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)

\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)

\(\Leftrightarrow12-7x=0\)

\(\Leftrightarrow7x=12\)

hay \(x=\frac{12}{7}\)

Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)

e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x

\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow31x=1\)

hay \(x=\frac{1}{31}\)

Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)

31 tháng 3 2020

a) \(\frac{x+5}{4}\)-\(\frac{2x-5}{3}\)=\(\frac{6x-1}{3}\)+\(\frac{2x-3}{12}\)

\(\frac{3\left(x+5\right)}{12}\)-\(\frac{4\left(2x-5\right)}{12}\)=\(\frac{4\left(6x-1\right)}{12}\)+\(\frac{2x-3}{12}\)

⇒ 3x+15-8x+20=24x-4+2x-3

⇔3x+15-8x+20-24x+4-2x+3=0

⇔-31x+42=0

⇔x=\(\frac{42}{31}\)

Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{42}{31}\)}

31 tháng 3 2020

b) \(\frac{2x+3}{3}\)=\(\frac{5-4x}{2}\)

\(\frac{2\left(2x+3\right)}{6}\)=\(\frac{3\left(5-4x\right)}{6}\)

⇒4x+6=15-12x

⇔16x=9

⇔ x=\(\frac{9}{16}\)

Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{9}{16}\)}

18 tháng 2 2021

a) ĐKXĐ : \(x\ne-2;x\ne5\)

\(\frac{7}{x+2}=\frac{3}{x-5}\)

<=> 3(x + 2) = 7(x - 5)

<=> 3x + 6 = 7x - 35

<=> 4x = 41

<=>x = 41/4 (tm)

Vậy x = 41/4 là ngiệm phương trình

b) ĐKXĐ \(x\ne\pm3\)

\(\frac{2x-1}{x+3}=\frac{2x}{x-3}\)

<=> \(\frac{\left(2x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

<=> (2x - 1)(x - 3) = 2x(x + 3)

<=> 2x2 - 7x + 3 = 2x2 + 6x

<=> 13x = 3

<=> x = 3/13 (tm)

Vậy x = 3/13 là nghiệm phương trình

c) ĐKXĐ : \(x\ne-7;x\ne1,5\)

Khi đó \(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)

<=> \(\frac{\left(3x-2\right)\left(2x-3\right)}{\left(x+7\right)\left(2x-3\right)}=\frac{\left(6x+1\right)\left(x+7\right)}{\left(x+7\right)\left(2x-3\right)}\)

<=> (3x - 2)(2x - 3) = (6x + 1)(x + 7)

<=> 6x2 - 13x + 6 = 6x2 + 43x + 7

<=> 56x = -1

<=> x = -1/56 (tm) 

Vậy x = -1/56 là nghiệm phương trình

d) ĐKXĐ : \(x\ne\pm1\)

Khi đó \(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)

<=> \(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{5\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

<=> (2x + 1)(x + 1) = 5(x - 1)2

<=> 2x2 + 3x + 1 = 5x2 - 10x + 5

<=> 3x2 - 13x + 4 = 0

<=> 3x2 - 12x - x + 4 = 0

<=> 3x(x - 4) - (x - 4) = 0

<=> (3x - 1)(x - 4) = 0

<=> \(\orbr{\begin{cases}3x-1=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy x \(\in\left\{\frac{1}{3};4\right\}\)là nghiệm phương trình

18 tháng 2 2021

e) ĐKXĐ : \(x\ne1\)

Khi đó \(\frac{4x-5}{x-1}=2+\frac{x}{x-1}\)

<=> \(\frac{3x-5}{x-1}=2\)

<=> 3x - 5 = 2(x - 1) 

<=> 3x - 5 = 2x - 2

<=> x = 3 (tm) 

Vậy x = 3 là nghiệm phương trình

f) ĐKXĐ : \(x\ne-1\)

 \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> \(\frac{3x+2}{x+1}=3\)

<=> 3x + 2 = 3(x + 1)

<=> 3x + 2 = 3x + 3

<=> 0x = 1

<=> \(x\in\varnothing\)

Vậy tập nghiệm phương trình S = \(\varnothing\)

g) ĐKXĐ : \(x\ne2\)

Khi đó \(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)

<=>\(\frac{x-2}{x-2}=3\)

<=> (x - 2) = 3(x - 2)

<=> x - 2 = 3x - 6

<=> -2x = -4

<=> x = 2 (loại) 

Vậy tập nghiệm phương trình S = \(\varnothing\)

h) ĐKXĐ : \(x\ne7\)

Khi đó \(\frac{1}{7-x}=\frac{x-8}{x-7}-8\)

<=> \(\frac{x-7}{x-7}=8\)

<=> x - 7 = 8(x - 7)

<=> x - 7 = 8x - 56

<=> 7x = 49

<=> x = 7 (loại)

Vậy tập nghiệm phương trình S = \(\varnothing\)

i) ĐKXĐ : \(x\ne0;x\ne6\)

Ta có : \(\frac{x+6}{x}=\frac{1}{2}+\frac{15}{2\left(x-6\right)}\)

<=> \(\frac{x+6}{x}-\frac{15}{2\left(x-6\right)}=\frac{1}{2}\)

<=> \(\frac{2\left(x+6\right)\left(x-6\right)}{2x\left(x-6\right)}-\frac{15x}{2x\left(x-6\right)}=\frac{1}{2}\)

<=> \(\frac{2x^2-72-15x}{2x\left(x-6\right)}=\frac{1}{2}\)

<=> 4x2 - 144 - 30x = 2x(x - 6) 

<=> 2x2 - 18x - 144 = 0

<=> x2 - 9x - 72 = 0

<=> x2 - 9x + 81/4 - 72- 81/4 = 0

<=> \(\left(x-\frac{9}{2}\right)^2-\frac{369}{4}=0\)

<=> \(\left(x-\frac{9}{2}+\sqrt{\frac{369}{4}}\right)\left(x-\frac{9}{2}-\sqrt{\frac{369}{4}}\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{9}{2}-\sqrt{\frac{369}{4}}\\x=\frac{9}{2}+\sqrt{\frac{369}{4}}\end{cases}}\)(tm)

Vậy x \(\in\left\{\frac{9}{2}-\sqrt{\frac{369}{4}};\frac{9}{2}+\sqrt{\frac{369}{4}}\right\}\)

20 tháng 2 2020

a) \(\frac{4x-8}{2x^2+1}=0\)

\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

Vậy x=2

b)

\(\frac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)

\(\Rightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy x=-2

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này