\(|x^2|=|5x|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>x^2=5x hoặc x^2=-5x

=>x(x-5)=0 hoặc x(x+5)=0

=>x=0;x=5;x=-5

27 tháng 8 2018

\(5x-\frac{3-2x}{2}>\frac{7x-5}{2}+x\)

\(\Leftrightarrow\) \(\frac{10x}{2}-\frac{3-2x}{2}>\frac{7x-5}{2}+\frac{2x}{2}\)

\(\Rightarrow\) \(10x-3+2x>7x-5+2x\)

\(\Leftrightarrow\) \(10x+2x-7x-2x>-5+3\)

\(\Leftrightarrow\) \(3x>-2\) 

\(\Leftrightarrow\) \(x>-\frac{2}{3}\)

Vậy ................

27 tháng 8 2018

4x > (5x -2)/2

4x - 5x/2 > -1

3x/2 > -1

3x > -2

x>-2/3

17 tháng 5 2017

b, \(\frac{5x+1}{x+3}-\frac{3x-2}{x-1}=\frac{5.\left(x+3\right)-14}{x+3}-\frac{3\left(x-1\right)+1}{x-1}=5-\frac{14}{x+3}-3+\frac{1}{x-1}=2+\left(\frac{1}{x-1}-\frac{14}{x+3}\right)=2+\left(\frac{x+3-14x+14}{x^2-x+3x-3}\right)=2+\left(\frac{17-13x}{x^2+2x-3}\right)>2\)

16 tháng 4 2018

\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)

Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)

\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)

\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)

Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)

13 tháng 9 2020

a) \(\frac{1}{2}+\left(5x-9\right)>\frac{6-5x}{7}+12\)

<=> \(\frac{7}{14}+\frac{14\left(5x-9\right)}{14}>\frac{2\left(6-5x\right)}{14}+\frac{168}{14}\)

<=> \(\frac{7}{14}+\frac{70x-126}{14}>\frac{12-10x}{14}+\frac{168}{14}\)

<=> 7 + 70x - 126 > 12 - 10x + 168

<=> 70x + 10x > 12 + 168 - 7 + 126

<=> 80x > 299

<=> x > 299/80 

b) \(\frac{3x-5}{6}-4x+\frac{2}{5}>\frac{2+5x}{3}\)

\(\Leftrightarrow\frac{5\left(3x-5\right)}{30}-\frac{120x}{30}+\frac{12}{30}>\frac{10\left(2+5x\right)}{30}\)

\(\Leftrightarrow\frac{15x-25}{30}-\frac{120x}{30}+\frac{12}{30}>\frac{20+50x}{30}\)

<=> 15x - 25 - 120x + 12 > 20 + 50x

<=> 15x - 120x - 50x > 20 + 25 - 12

<=> -155x > 33

<=> x < -33/155

6 tháng 5 2017

Ta có : \(\dfrac{3-7x}{1+x}\ge\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{3-7x}{1+x}-\dfrac{1}{2}\ge0\)

\(\Leftrightarrow\dfrac{2\left(3-7x\right)-\left(x+1\right)}{2\left(x+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{5-15x}{2\left(x+1\right)}=\dfrac{5\left(3-x\right)}{2\left(x+1\right)}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-x\ge0\\x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3-x\le0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le3\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge3\\x< -1\end{matrix}\right.\end{matrix}\right.\)

Vậy suy ra tập nghiệm

b, (x+4)(5x+9)-x>4

\(\Leftrightarrow\)5x2+29x+36-x>4

\(\Leftrightarrow\)5x2+28x+36>4

\(\Leftrightarrow\)5x2+28x+32>0

\(\Leftrightarrow\)5(x2+\(\dfrac{28}{5}\)x+\(\dfrac{32}{5}\))>0

\(\Leftrightarrow\)x2+\(\dfrac{28}{5}\)x+\(\dfrac{32}{5}\)>0

\(\Leftrightarrow\)x2+2.\(\dfrac{14}{5}\)x+\(\dfrac{206}{25}\)+\(\dfrac{32}{5}\)-\(\dfrac{206}{25}\)>0

\(\Leftrightarrow\)(x+\(\dfrac{14}{5}\))2-\(\dfrac{46}{25}\)>0

\(\Leftrightarrow\)(x+\(\dfrac{14-\sqrt{46}}{5}\))(x+\(\dfrac{14+\sqrt{46}}{5}\))>0

\(\Leftrightarrow\)2 trường hợp

Câu 1:

a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{12x-2\left(5x+2\right)}{12}=\dfrac{3\left(7-3x\right)}{12}\)

\(\Leftrightarrow12x-10x-4=21-9x\)

\(\Leftrightarrow11x=25\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

b) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\Leftrightarrow x=\dfrac{1}{3}\\x-3=0\Leftrightarrow x=3\\7-2x=0\Leftrightarrow x=3,5\end{matrix}\right.\)

c) \(\left|3x\right|=4x+8\) (1)

Ta có: \(\left|3x\right|=3x\Leftrightarrow3x\ge0\Leftrightarrow x\ge0\)

\(\left|3x\right|=-3x\Leftrightarrow3x< 0\Leftrightarrow x< 0\)

Với \(x\ge0\), phương trình (1) có dạng:

\(3x=4x+8\Leftrightarrow-x=8\Leftrightarrow x=-8\)

(không thoả mãn điều kiện) \(\rightarrow\) loại

Với \(x< 0\), phương trình (1) có dạng:

\(-3x=4x+8\Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)

(thoả mãn điều kiện) \(\rightarrow\) nhận

Vậy phương trình đã cho có 1 nghiệm \(x=-\dfrac{8}{7}\)

Câu 2:

\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)

\(\Leftrightarrow12x^2-2x\ge12x^2+9x-8x-6\)

\(\Leftrightarrow-3x\ge-6\)

\(\Leftrightarrow x\le2\)

Vậy bất phương trình đã cho có nghiệm \(x\le2\)

10 tháng 4 2017

a)

\(\left(a\right)\Leftrightarrow\dfrac{x+1}{x-1}\le0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\x-1\ge0\end{matrix}\right.\end{matrix}\right.\)

(I) \(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x< 1\end{matrix}\right.\) \(\Rightarrow-1\le x< 1\)

(II)\(\Rightarrow\left\{{}\begin{matrix}x\le-1\\x>1\end{matrix}\right.\) vô nghiệm

Kết luận ;\(-1\le x< 1\)

\(\left(b\right)\Leftrightarrow\dfrac{2x+3}{5x-2}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3\ge0\\5x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3\le0\\5x-2< 0\end{matrix}\right.\end{matrix}\right.\)

(I)\(\Rightarrow x\le-\dfrac{3}{2}\)

(II)\(\Rightarrow x>\dfrac{2}{5}\)

Kết luận nghiệm \(\left[{}\begin{matrix}x\le-\dfrac{3}{2}\\x>\dfrac{2}{5}\end{matrix}\right.\)

a: \(\Leftrightarrow x^2+3>5x-2\)

\(\Leftrightarrow x^2-5x+5>0\)

\(\Leftrightarrow x\in\left(-\infty;\dfrac{5-\sqrt{5}}{2}\right)\cup\left(\dfrac{5+\sqrt{5}}{2};+\infty\right)\)

b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2x}{x+3}-1>2\\\dfrac{2x}{x+3}-1< -2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2x-3\left(x+3\right)}{x+3}>0\\\dfrac{2x+x+3}{x+3}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+9}{x+3}< 0\\\dfrac{x+1}{x+3}< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-9< x< -3\\-3< x< -1\end{matrix}\right.\)

12 tháng 5 2016

1) \(\frac{6x-2}{8}-\frac{3x-6}{8}-\frac{8}{8}>\frac{20-12x}{8}\)

\(<=>6x-2-3x+6-8>20-12x\)

\(<=>15x>24\)

\(<=>x>\frac{24}{15}\)

2) a)|-2,5x|=x-12

TH1: x>=0 => |-2,5x|=2,5x

2,5x=x-12 <=> x=-8 (loại)

TH2: x<0 => |-2,5x|=-2,5x

-2,5x=x-12 <=> x= 3,42857... (loại)

Vậy không có giá trị x thoả mãn

b) |5x|-3x-2=0

TH1: 5x>=0 => x>=0 => |5x|=5x

5x-3x-2 = 0 <=> x=1 (chọn)

TH2: 5x<0 => x<0 => |5x|=-5x

-5x-3x-2=0 <=> x=-0,25 (chọn)

Vậy x=1 hoặc x=-0,25

c) |-2x|+x-5x-3=0

TH1: -2x>=0 <=> x<=0 <=> |-2x|=-2x

-2x+x-5x-3=0 <=> x=-3 (chọn)

TH2: -2x<0 <=> x>0 <=> |-2x|=2x

2x+x-5x-3=0 <=> x=-1,5 (loại)

Vậy x=-3

3) a) Ta có: -x2+4x-4=-(x-2)2<=0

=> -x2+4x-4-5<=-5

=> -x2+4x-9<=-5

b) Ta có: x2-2x+1=(x-1)2>=0

=> x2-2x+1+8>=8

=> x2-2x+9>=8

12 tháng 5 2016

Bài 2 : 

|-2/5x| = x - 12

2/5x = x - 12 

2/5x - x = -12

=> -3/5x = -12

=> x =-12 : -3/5

=>x= 20