\(\frac{1}{2}\)) \(\ge\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

BPT \(\Leftrightarrow\left(x-1\right)^2\left(3x+\frac{1}{2}\right)\ge0\)

\(\left(x-1\right)^2\ge0\) nên để vế trái của BPT không âm thì 3x + 1/2 không âm. Hay:

\(3x+\frac{1}{2}\ge0\Leftrightarrow x\ge-\frac{1}{6}\)

Vậy...

Có cần biểu diễn trên trục số ko ta?

30 tháng 7 2019

tth ko

12 tháng 5 2016

1) \(\frac{6x-2}{8}-\frac{3x-6}{8}-\frac{8}{8}>\frac{20-12x}{8}\)

\(<=>6x-2-3x+6-8>20-12x\)

\(<=>15x>24\)

\(<=>x>\frac{24}{15}\)

2) a)|-2,5x|=x-12

TH1: x>=0 => |-2,5x|=2,5x

2,5x=x-12 <=> x=-8 (loại)

TH2: x<0 => |-2,5x|=-2,5x

-2,5x=x-12 <=> x= 3,42857... (loại)

Vậy không có giá trị x thoả mãn

b) |5x|-3x-2=0

TH1: 5x>=0 => x>=0 => |5x|=5x

5x-3x-2 = 0 <=> x=1 (chọn)

TH2: 5x<0 => x<0 => |5x|=-5x

-5x-3x-2=0 <=> x=-0,25 (chọn)

Vậy x=1 hoặc x=-0,25

c) |-2x|+x-5x-3=0

TH1: -2x>=0 <=> x<=0 <=> |-2x|=-2x

-2x+x-5x-3=0 <=> x=-3 (chọn)

TH2: -2x<0 <=> x>0 <=> |-2x|=2x

2x+x-5x-3=0 <=> x=-1,5 (loại)

Vậy x=-3

3) a) Ta có: -x2+4x-4=-(x-2)2<=0

=> -x2+4x-4-5<=-5

=> -x2+4x-9<=-5

b) Ta có: x2-2x+1=(x-1)2>=0

=> x2-2x+1+8>=8

=> x2-2x+9>=8

12 tháng 5 2016

Bài 2 : 

|-2/5x| = x - 12

2/5x = x - 12 

2/5x - x = -12

=> -3/5x = -12

=> x =-12 : -3/5

=>x= 20

16 tháng 4 2018

\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)

Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)

\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)

\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)

Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)

28 tháng 3 2018

       \(2x-2=8-3x\)

\(\Leftrightarrow\)\(2x+3x=8+2\)

\(\Leftrightarrow\)\(5x=10\)

\(\Leftrightarrow\)\(x=2\)

Vậy...

         \(x^2-3x+1=x+x^2\)

\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)

\(\Leftrightarrow\)\(-4x=-1\)

\(\Leftrightarrow\)\(x=\frac{1}{4}\)

Vậy...

28 tháng 3 2018

mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))

26 tháng 4 2018

a)  \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)

Vậy...

b)   \(ĐKXĐ:\)  \(x\ne-2;\) \(x\ne4\)

          \(\frac{3}{x+2}+\frac{2}{x-4}=0\)

\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Rightarrow\)\(5x-8=0\)

\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)

Vậy...

c)  \(x^3+4x^2+4x+3=0\)

\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)

\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)  (do  \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))

\(\Leftrightarrow\)\(x=-3\)

Vậy...

26 tháng 4 2018

có thể làm giùm 3 câu còn lại ko bn:)

10 tháng 2 2018

a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)

\(3x^2+10x-8=5x^2-2x+10\)

\(3x^2-5x^2+10x+2x-8-10=0\)

\(-2x^2+12x-18=0\)

\(x^2-6x+9=0\)

\(\left(x-3\right)^2=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

b) \(\frac{x^2-x-6}{x-3}=0\)

\(\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)

\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

10 tháng 2 2018

Gin hotaru  

24 tháng 4 2019

a. \(x^2-4x+3\le0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(3x-3\right)\le0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\le0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\ge0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\left(Vo.li\right)\\\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\end{matrix}\right.\)

Vậy \(1\le x\le3\)

b. \(9x^2-6x\ge0\)

\(\Leftrightarrow3x\left(3x-2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\ge0\\3x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3x\le0\\3x-2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\le\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(0\le x\le\frac{2}{3}\)

c. Câu c cậu tự làm nha, tớ đang có việc. Quy đồng lên rồi tính bình thường thôi.

29 tháng 3 2020

1) Ta có : \(4x+20=0\)

=> \(x=-\frac{20}{4}=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

2) Ta có : \(3x+15=30\)

=> \(3x=15\)

=> \(x=5\)

Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)

3) Ta có : \(8x-7=2x+11\)

=> \(8x-2x=11+7=18\)

=> \(6x=18\)

=> \(x=3\)

Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)

4) Ta có : \(2x+4\left(36-x\right)=100\)

=> \(2x+144-4x=100\)

=> \(-2x=-44\)

=> \(x=22\)

Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)

5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)

=> \(2x-3+5=4x+12\)

=> \(-2x=10\)

=> \(x=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

29 tháng 3 2020

1) 4x+20=0

\(\Leftrightarrow\) 4x=-20

\(\Leftrightarrow\) x=-5

Vậy pt trên có tập nghiệm là S={-5}

2) 3x+15=30

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

3) 8x-7=2x+11

\(\Leftrightarrow\) 8x-2x=11+7

\(\Leftrightarrow\) 6x=18

\(\Leftrightarrow\) x=3

Vậy pt trên có tập nghiệm là S={3}

4) 2x+4(36-x)=100

\(\Leftrightarrow\) 2x+144-4x=100

\(\Leftrightarrow\) -2x+144=100

\(\Leftrightarrow\) -2x=-44

\(\Leftrightarrow\) x=22

Vậy pt trên có tập nghiệm là S={22}

5) 2x-(3-5x)=4(x+3)

\(\Leftrightarrow\) 2x-3+5x=4x+12

\(\Leftrightarrow\) 2x+5x-4x=12+3

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

6) 3x(x+2)=3(x-2)2

\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)

\(\Leftrightarrow\) 3x2+6x=3x2-12x+12

\(\Leftrightarrow\) 3x2-3x2+6x+12x=12

\(\Leftrightarrow\) 18x=12

\(\Leftrightarrow\) x=\(\frac{2}{3}\)