K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{5;-2\right\}\)

\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)

Câu d xem lại đề

4 tháng 2 2021

có ai giúp mình câu c và d không mình đang cần gấpyeu

14 tháng 7 2021

a, \(3x^3-5x^2-x-2>0\)

\(< =>3x^3+x^2+x-6x^2-2x-2>0\)

\(< =>x\left(3x^2+x+1\right)-2\left(3x^2+x+1\right)>0\)

\(< =>\left(x-2\right)\left(3x^2+x+1\right)>0\)

có \(3x^2+x+1=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{3}\right)=3\left[x^2+2.\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{35}{36}\right]\)

\(=3\left[\left(x+\dfrac{1}{6}\right)^2+\dfrac{35}{36}\right]>0=>x-2>0< =>x>2\)

b, \(A=2x^2+y^2-2xy-2x+3\)

\(A=x^2-2xy+y^2+x^2-2x+1+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)

dấu"=" xảy ra<=>\(x=y=1\)

5 tháng 3 2020

\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\\ \left(3x+2\right)\left(x^2-1\right)-\left(9x^2-4\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left[\left(x-1\right)-\left(3x-2\right)\right]=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(1-2x\right)=0\\ \left[{}\begin{matrix}3x+2=0\\x+1=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)

\(b.x\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x^2-2x+4\right)=0\\ x\left(x^2-9\right)-\left(x^3+8\right)=0\\ x^3-9x-x^3-8=0\\ -9x-8=0\\ -9x=8\\ x=\frac{-8}{9}\)

\(c.2x\left(x-3\right)+5\left(x-3\right)=0\\ \left(x-3\right)\left(2x+5\right)=0\\ \left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-5}{2}\end{matrix}\right.\)

\(d.\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\\ \left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\\ \left(3x-1\right)\left[\left(x^2+2\right)-\left(7x-10\right)\right]=0\\ \left(3x-1\right)\left(x^2+2-7x+10\right)=0\\ \left(3x-1\right)\left(x^2-7x+12\right)=0\\ \left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \left(3x-1\right)\left[\left(x^2-4x\right)+\left(-3x+12\right)\right]=0\\ \left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \left(3x-1\right)\left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=4\\x=3\end{matrix}\right.\)

5 tháng 3 2020

\(e.\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\\ \left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\\ \left(x+2\right)\left[\left(3-4x\right)-\left(x+2\right)\right]=0\\ \left(x+2\right)\left(3-4x-x-2\right)=0\\ \left(x+2\right)\left(1-5x\right)=0\left[{}\begin{matrix}x+2=0\\1-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{1}{5}\end{matrix}\right.\)

\(f.x\left(2x-7\right)-4x+14=0\\ x\left(2x-7\right)-2\left(2x-7\right)=0\\ \left(2x-7\right)\left(x-2\right)=0\\ \left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)

\(g.3x-15=2x\left(x-5\right)\\ 3\left(x-5\right)=2x\left(x-5\right)\\ 3\left(x-5\right)-2x\left(x-5\right)=0\\ \left(x-5\right)\left(3-2x\right)=0\\ \left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)

\(h.\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \left(2x+1\right)\left[\left(3x-2\right)-\left(5x-8\right)\right]=0\\ \left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \left(2x+1\right)\left(6-2x\right)=0\\ \left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=3\end{matrix}\right.\)

21 tháng 1 2022

a) \(x\left(2x-9\right)=3x\left(x-5\right)\)

\(\Leftrightarrow x.\left(2x-9\right)-x.3\left(x-5\right)=0\)

\(\Leftrightarrow x.\left[\left(2x-9\right)-3\left(x-5\right)\right]=0\)

\(\Leftrightarrow x.\left(2x-9-3x+15\right)=0\)

\(\Leftrightarrow x.\left(6-x\right)=0\)

\(\Leftrightarrow S=\left\{0;6\right\}\)

b) \(0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)

\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left[0,5x-\left(1,5x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(1-x\right)=0\)

\(+x-3=0\Rightarrow x=3\)

\(+1-x=0\Rightarrow x=1\)

\(\Rightarrow S=\left\{1;3\right\}\)

c) \(3x-15=2x\left(x-5\right)\)

\(\Leftrightarrow\left(3x-15\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(3-2x\right)\left(x-5\right)=0\)

\(\Rightarrow3-2x=\frac{3}{2}\Rightarrow x-5\Rightarrow x=5\)

\(\Rightarrow S=\left\{5;\frac{3}{2}\right\}\)

21 tháng 1 2022

a)
\(x\left(2\times-9\right)=3\times\left(\times-5\right)\)

\(\text{⇔}x.\left(2\times-9\right)-x.3\left(x-5\right)=0\)

 \(\text{⇔}x.[\left(2\times-9\right)-3\left(x-5\right)]=0\)

 \(\text{⇔}x.\left(2x-9-3x+15\right)=0\)

 \(\text{⇔}x.\left(6-x\right)=0\)

\(\text{⇔}x=0\) hoặc \(6-x=0+6-x=0\)

\(\text{⇔}x=6\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;6\right\}\) BIẾT MỖI CÂU A :))

a, \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\left(ĐKXĐ:x\ne\pm2;\pm5\right)\)

\(\frac{x+9}{\left(x-5\right)\left(x+2\right)}-\frac{x+15}{\left(x+5\right)\left(x-5\right)}=\frac{1}{x+2}\)

\(\frac{\left(x+9\right)\left(x+5\right)}{\left(x-5\right)\left(x+2\right)\left(x+5\right)}-\frac{\left(x+15\right)\left(x+2\right)}{\left(x+5\right)\left(x-5\right)\left(x+2\right)}=\frac{\left(x+5\right)\left(x-5\right)}{\left(x+2\right)\left(x+5\right)\left(x-5\right)}\)

Khử mẫu : \(\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)=\left(x+5\right)\left(x-5\right)\)

\(x^2+14x+45-x^2-17x-30=x^2-25\)

\(-3x+15-x^2+25=0\)

\(-3x-x^2+40=0\)( giải delta ta đc )

\(x_1=-5;x_2=8\)

b, \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1ĐKXĐ\left(x\ne1;\frac{1}{3}\right)\)

\(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=1\)

\(\frac{x-1}{\left(3x-1\right)\left(x-1\right)}+\frac{\left(2x+2\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=\frac{\left(3x-1\right)\left(x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)

Khửi mẫu \(x-1+\left(2x+2\right)\left(3x-1\right)-3x^2-1=\left(3x-1\right)\left(x-1\right)\)( bn tự nốt nhé)

c, \(\left(x+3\right)^2-10\ge\left(x+3\right)\left(x+2\right)-4\)

\(x^2+6x+9-10\ge x^2+5x+6-4\)

\(x-3\ge0\Leftrightarrow x\ge3\)

24 tháng 7 2020

a) \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\); ĐKXĐ: x # -2; x # +-5

<=> \(\frac{x+9}{\left(x+2\right)\left(x-5\right)}-\frac{x+15}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+2}\)

<=> \(\frac{\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)\left(x+5\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}\)

<=> (x + 9)(x + 5) - (x + 15)(x + 2) = (x - 5)(x + 5)

<=> -3x + 15 = x^2 - 25

<=> -3x + 15 - x^2 + 25 = 0

<=> -3x + 40 - x^2 = 0

<=> x^2 + 3x - 40 = 0

<=> (x - 5)(x + 8) = 0

<=> x - 5 = 0 hoặc x + 8 = 0

<=> x = 5 (ktm0 hoặc x = -8 (tm)

b) \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1\); ĐKXĐ: x # 1/3; x # 1

<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{x\left(3x-1\right)-\left(3x-1\right)}=1\)

<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=1\)

<=> \(\frac{x-1}{\left(x-1\right)\left(3x-1\right)}+\frac{2\left(x+1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}\)

<=> x - 1 + 2(x + 1)(3x - 1) - 3x^2 + 1 = (x - 1)(3x - 1)

<=> 5x - 4 + 3x^2 = 3x^2 - 4x + 1

<=> 5x - 4 = -4x + 1

<=> 5x + 4x = 1 + 4

<=> 9x = 5

<=> x = 5/9 (tm)

c) (x + 3)^2 - 10 >= (x + 3)(x + 2) - 4

<=> x^2 + 3x + 3x + 9 - 10 >=  x^2 + 2x + 3x + 6 - 4

<=> x^2 + 6x + 9 - 10 >= x^2 + 5x + 6 - 4

<=> x^2 + 6x - 1 >= x^2 + 5x + 2

<=> x^2 + 6x - 1 - x^2 - 5x - 2 >= 0

<=> x - 3 >= 0

<=> x >= 3

26 tháng 4 2021

2x-x(3x+1)≤15-3x(x+2)

2x-3x2-x≤15-3x-6x

2x-3x2-x+3x2 +6x≤15

7x≤15

x≤15/7

 

 

27 tháng 4 2023

Cậu tách ra `2->3` câu thôi nhe

 

a: =>17x-5x-15-2x-5=0

=>10x-20=0

=>x=2

b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)

=>11x+23=-2x-16

=>13x=-39

=>x=-3(nhận)

c: =>5x+7>=3x-3

=>2x>=-10

=>x>=-5

d: =>5(3x-1)=-2(x+1)

=>15x-5=-2x-2

=>17x=3

=>x=3/17

e: =>4x^2-1-4x^2-3x-2=0

=>-3x-3=0

=>x=-1

g: =>7x-5-8x+2-7<0

=>-x-10<0

=>x+10>0

=>x>-10

a: =>17x-5x-15-2x-5=0

=>10x-20=0

=>x=2

b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)

=>11x+23=-2x-16

=>13x=-39

=>x=-3(nhận)

c: =>5x+7>=3x-3

=>2x>=-10

=>x>=-5

d: =>5(3x-1)=-2(x+1)

=>15x-5=-2x-2

=>17x=3

=>x=3/17

e: =>4x^2-1-4x^2-3x-2=0

=>-3x-3=0

=>x=-1

g: =>7x-5-8x+2-7<0

=>-x-10<0

=>x+10>0

=>x>-10