Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{x-2}+\frac{x+2}{x}>2\)
\(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}>2\)
\(\frac{x^2+x^2-4}{x\left(x-2\right)}>2\)
\(2x^2-4>2.x\left(x-2\right)\)
\(x^2-2>x^2-2x\)
\(\Leftrightarrow2>2x\)
\(\Rightarrow x< 1\)
\(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}>\frac{2x\left(x-2\right)}{x\left(x-2\right)}\)
=\(\frac{x^2+x^2-4}{x\left(x-2\right)}>\frac{2x^2+2x}{x\left(x-2\right)}\)
=>\(x^2+x^2-4>2x^2+2x\)
= \(x^2+x^2-2x^2-2x>4\)
=-2x>4
=x<-2
thick cái nha
a, x+2/5 >=0 <=> x+2 >=0 <=> x>=-2
b. x+2/x-3 <0 <=> 1+5/x-3 <0 <=> 5/x-3 <-1 <=> x-3> -5 <=> x>-2
c. x-1/x-3 >1 <=> 1+ 2/x-3 >1 <=> 2/x-3 >0 <=> x-3 >0 <=> x>3
\(\frac{x+2}{5}< \frac{x+2}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{6\left(x+2\right)}{30}< \frac{10\left(x+2\right)}{30}+\frac{15}{30}\)
\(\Leftrightarrow\frac{6x+12}{30}< \frac{10x+20}{30}+\frac{15}{30}\)
\(\Leftrightarrow6x+12< 10x+20+15\)
\(\Leftrightarrow6x-10x< 20+15-12\)
\(\Leftrightarrow-4x< 23\)
\(\Leftrightarrow x>-\frac{23}{4}\)
Vậy tập nghiệm của bất phương trình là \(x>-\frac{23}{4}\)
\(\frac{x+2}{4}-x< \frac{1}{3}\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow\frac{3x+6}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow3x+6-12x< 4\)
\(\Leftrightarrow3x-12x< 4-6\)
\(\Leftrightarrow-9x< -2\)
\(\Leftrightarrow x>\frac{2}{9}\)
Vậy tập nghiệm của bất phương trình là \(x>\frac{2}{9}\)
\(\frac{2x-1}{x+2}< 0\)( ĐKXĐ : \(x\ne-2\))
Xét hai trường hợp
1/ \(\hept{\begin{cases}2x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-2\end{cases}}\Rightarrow-2< x< \frac{1}{2}\)
2/ \(\hept{\begin{cases}2x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}\)( loại )
Vậy tập nghiệm của bất phương trình là \(-2< x< \frac{1}{2}\)
a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)
<=> \(9-6x>10-5x\)
<=> 9 - 10 > -5x + 6x
<=> x < -1
Vậy nghiệm của bất phương trình là x < -1
b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)
<=> \(x-1-2x+2\le3x\)
<=> \(-x+1\le3x\)
<=> \(1\le2x\)
<=> x \(\ge\frac{1}{2}\)
Vậy nghiệm của bất phương trình là x > = 1/2
c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)
<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)
<=> 2x + 1 > 2x - 13
<=> 1 > -13 (luôn đúng)
Vậy nghiệm của bất phương trình luôn đúng với mọi x
\(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2004}-\frac{x+2005}{2003}-\frac{x+2005}{2003}=0\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\Leftrightarrow x=-2005\)
=> (x+1)/2004+1+(x+2)/2003+1=(x+3)/2002+1+(x+4)/2001+1
=> (x+2005)/2004+(x+2005)/2003=(x+2005)/2002+(x+2005)/2001
=> (x+2005)(1/2004+1/2003-1/2002-1/2001)=0
=> x+2005=0
=> x=-2005
b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)
=> \(6x-4\ge5x+8\)
=> \(x-12\ge0\)
=> \(x\ge12\)
bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)
=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)
=> \(44-8x>18-6x\)
=> \(x< 13\)
Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)
(3-căn 13)/2 <x < (3 +căn 13)/2