K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(x\ge4\)

\(BPT\Leftrightarrow x^2+x+1>x-4\)

\(\Leftrightarrow x^2+5>0\)(hiển nhiên đúng với mọi x)

Xét x<4

\(BPT\Leftrightarrow x^2+x+1>4-x\)

\(\Leftrightarrow x^2+2x-3>0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

28 tháng 1 2022

\(\Leftrightarrow\left(x^4+5x^2+6\right)\left(x^4+5x^2+4\right)-24\)

Đặt \(x^4+5x^2+6=t\)

\(t\left(t-2\right)-24=t^2-2t-24\)

\(\Leftrightarrow t^2-2t+1-25=\left(t-1\right)^2-5^2=\left(t-6\right)\left(t+4\right)>0\)

TH1 : \(\left\{{}\begin{matrix}t-6>0\\t+4>0\end{matrix}\right.\Leftrightarrow t>6\)

TH2 : \(\left\{{}\begin{matrix}t-6< 0\\t+4< 0\end{matrix}\right.\)<=> t < -4 

Theo cách đặt \(x^4+5x^2+6>6\Leftrightarrow x^2\left(x^2+5\right)>0\)* luôn đúng * 

\(x^4+5x^2+6< -4\Leftrightarrow x^4+5x^2+10< 0\)

\(\Leftrightarrow x^4+\dfrac{2.5}{2}x^2+\dfrac{25}{4}+\dfrac{15}{4}< 0\Leftrightarrow\left(x^2+\dfrac{5}{2}\right)^2+\dfrac{15}{4}< 0\)( vô lí ) 

28 tháng 1 2022

Cậu làm thiếu rất nhiều bước và có thể người khác sẽ khó hiểu. Xem cách trình bày của mình nè.

9 tháng 12 2017

( x + 1 ) 2 ( x 2 + 4 ) = x 2 − x − 2 (1)

Điều kiện: x2 + 4 ≥ 0 (luôn đùng x)

( 1 ) ⇔ ( x + 1 ) 2 ( x 2 + 4 ) = ( x − 2 ) ( x + 1 ) ⇔ ( x + 1 ) 2 ( x 2 + 4 ) − ( x − 2 ) = 0 ⇔ x = − 1 2 ( x 2 + 4 ) = x − 2 ( 2 )

  ( 2 ) ⇔ x ≥ 2 2 ( x 2 + 4 ) = x - 2 2 ⇔ x ≥ 2 x 2 + 4 x + 4 = 0 ⇔ x ≥ 2 x = − 2  (loại)

Vậy tập nghiệm của phương trình đã cho là {–1}

26 tháng 4 2017

Điều kiện:  x ≥ 1 ( * )

Ta có:  x 2 − x − 4 = 2 x − 1 ( 1 − x ) < = > x 2 + 2 x x − 1 + x − 1 − 2 ( x + x − 1 ) − 3 = 0

Đặt: x + x − 1 = y ( y ≥ 1 ) ( * * )  phương trình tr thành  y 2 − 2 y − 3 = 0

y 2 − 2 y − 3 = 0 < = > ( y + 1 ) ( y − 3 ) = 0 < = > y = − 1 y = 3

+ Vi y = -1 không thỏa mãn điều kiện (**).

 

+ Với y = 3 ta có phương trình:

x + x − 1 = 3 < = > x − 1 = 3 − x < = > x ≤ 3 x − 1 = 9 − 6 x + x 2 < = > x ≤ 3 x 2 − 7 x + 10 = 0 < = > x ≤ 3 x = 2 x = 5 < = > x = 2

thỏa mãn điều kiện (*). Vậy phương trình có nghiệm x = 2.

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

10 tháng 5 2021

a) Với m = 5 phương trình đã cho trở thành 

x2 - 8x + 7 = 0 

Dễ thấy phương trình trên có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 7

Vậy với m = 5 thì phương trình đã cho có tập nghiệm S = { 1 ; 7 }

b) Ta có : Δ = b2 - 4ac = [ -2( m - 1 ) ]2 - 4( m + 2 )

= 4( m2 - 2m + 1 ) - 4m + 8

= 4m2 - 12m + 12 = 4( m - 3/2 )2 + 3 ≥ 3 > 0 ∀ m

=> Phương trình đã cho luôn có hai nghiệm phân biệt với mọi số thực m

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)

Ta có : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)

\(\Rightarrow x_1^2+x_2^2=4x_1x_2\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)

\(\Rightarrow\left(2m-2\right)^2-6\left(m+2\right)=0\)

\(\Leftrightarrow4m^2-8m+4-6m-12=0\Leftrightarrow2m^2-7m-4=0\)

Đến đây dễ rồi bạn tự làm tiếp heng :)

29 tháng 5 2018

Ta có: 3 x 2  + 4(x – 1) =  x - 1 2 + 3

⇔ 3 x 2  + 4x – 4 =  x 2  – 2x + 1 + 3

⇔ 2 x 2 + 6x – 8 = 0 ⇔  x 2  + 3x – 4 = 0

Phương trình  x 2  + 3x – 4 = 0 có hệ số a = 1, b = 3, c = -4 nên có dạng a + b + c = 0, suy ra  x 1  = 1,  x 2  = -4

Vậy phương trình đã cho có hai nghiệm  x 1  = 1,  x 2  = -4

1:

\(\left\{{}\begin{matrix}\dfrac{2x+1}{x+1}+\dfrac{3y}{y-1}=1\\\dfrac{3x}{x+1}-\dfrac{4y}{y-1}=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-\dfrac{1}{x+1}+3+\dfrac{3}{y-1}=1\\3-\dfrac{3}{x+1}-\dfrac{4y-4+4}{y-1}=10\end{matrix}\right.\)

=>-1/(x+1)+3/(y-1)=1-2-3=-5 và -3/(x+1)-4/(y-1)=10-3-4=3

=>x+1=13/11 và y-1=-13/18

=>x=2/11 và y=5/18

16 tháng 10 2016

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(t=x^2+5x+4\)ta đc:

\(t\left(t+2\right)-24=0\)\(\Leftrightarrow t^2-4t+6t-24=0\)

\(\Leftrightarrow t\left(t-4\right)+6\left(t-4\right)=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t=-6\\t=4\end{cases}}\)

  • Với \(t=-6\Rightarrow x^2+5x+4=-6\)

\(\Rightarrow x^2+5x+10=0\)

\(\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\left(loai\right)\)

  • Với \(t=4\Rightarrow x^2+5x+4=4\)

\(\Rightarrow x\left(x+5\right)=0\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

18 tháng 1 2017

Chứng minh một số có tổng các chữ số là 2015 thì không phải là số chính phương.

25 tháng 10 2018

(x – 1)4 = x2 – 2x + 3 (1)

(1)  ( x − 1 ) 2 2 = x 2 − 2 x + 3 ⇔ ( x 2 − 2 x + 1 ) 2 = x 2 − 2 x + 3

Đặt t = x2 – 2x + 1, t≥0, phương trình (2) trở thành  t 2 = t + 2 ⇔ t 2 − t − 2 = 0 ⇔ ( t − 2 ) ( t + 1 ) = 0

 ó t = 2 (tm) hoặc t = –1 (loại)

Với t = 2 có x 2 − 2 x + 1 = 2 ⇔ x 2 − 2 x − 1 = 0 ⇔ x = 1 ± 2

Vậy tập nghiệm của phương trình (1) là  1 − 2 ; 1 + 2

20 tháng 11 2019

a)

3 · x 2 + x 2 - 2 x 2 + x - 1 = 0 ( 1 )

Đặt  t   =   x 2   +   x ,

Khi đó (1) trở thành :  3 t 2   –   2 t   –   1   =   0   ( 2 )

Giải (2) : Có a = 3 ; b = -2 ; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   - 1 / 3 .

+ Với t = 1  ⇒   x 2   +   x   =   1   ⇔   x 2   +   x   –   1   =   0   ( * )

Có a = 1; b = 1; c = -1  ⇒   Δ   =   1 2   –   4 . 1 . ( - 1 )   =   5   >   0

(*) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 3; b = 3; c = 1 ⇒   Δ   =   3 2   –   4 . 3 . 1   =   - 3   <   0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 2 − 4 x + 2 2 + x 2 − 4 x − 4 = 0 ⇔ x 2 − 4 x + 2 2 + x 2 − 4 x + 2 − 6 = 0 ( 1 )

Đặt  x 2   –   4 x   +   2   =   t ,

Khi đó (1) trở thành:   t 2   +   t   –   6   =   0   ( 2 )

Giải (2): Có a = 1; b = 1; c = -6

⇒  Δ   =   1 2   –   4 . 1 . ( - 6 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Với t = 2  ⇒   x 2   –   4 x   +   2   =   2

⇔   x 2   –   4 x   =   0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3  ⇒   x 2   –   4 x   +   2   =   - 3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5  ⇒   Δ ’   =   ( - 2 ) 2   –   1 . 5   =   - 1   <   0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó (1) trở thành:  t 2   –   6 t   –   7   =   0   ( 2 )

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm  t 1   =   - 1 ;   t 2   =   - c / a   =   7 .

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ √x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có nghiệm x = 49.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔   t 2   –   10   =   3 t   ⇔   t 2   –   3 t   –   10   =   0   ( 2 )

Giải (2): Có a = 1; b = -3; c = -10

⇒   Δ   =   ( - 3 ) 2   -   4 . 1 . ( - 10 )   =   49   >   0

⇒ (2) có hai nghiệm:

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình đã cho có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9