K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

NẾU BẤT PT THUẬN THÌ TA CÓ BẤT PT

-1+X-2X+1>5

-X>-5

X>-5

NẾU BẤT PT NGHỊCH THÌ TA CÓ PT

1-X+2X-1>5

X>5

8 tháng 4 2018

Lập bảng xét dấu :

x -2 \(\frac{1}{2}\) 
x+2-0+\(|\)+
2x-1-\(|\)-0+

+) Nếu \(x\le-2\) thì \(|x+2|=-x-2\)

                                        \(|2x-1|=1-2x\)

\(pt\Leftrightarrow\left(1-2x\right)-\left(-x-2\right)=5\)

\(\Leftrightarrow1-2x+x+2=5\)

\(\Leftrightarrow-x+3=5\)

\(\Leftrightarrow x=-2\left(tm\right)\)

Nếu \(-2< x< \frac{1}{2}\) thì \(|2x-1|=1-2x\)

                                              \(|x+2|=x+2\)

\(pt\Leftrightarrow\left(1-2x\right)-\left(x+2\right)=5\)

\(\Leftrightarrow1-2x-x-2=5\)

\(\Leftrightarrow-3x-1=5\)

\(\Leftrightarrow-3x=6\)

\(\Leftrightarrow x=-2\) ( loại )

+) Nếu \(x\ge\frac{1}{2}\) thì \(|2x-1|=2x-1\)

                                     \(|x+2|=x+2\)

\(pt\Leftrightarrow\left(2x-1\right)-\left(x+2\right)=5\)

\(\Leftrightarrow2x-1-x-2=5\)

\(\Leftrightarrow x-3=5\)

\(\Leftrightarrow x=8\left(tm\right)\)

Vậy ...

8 tháng 4 2018

Trường hợp 1: Nếu x+2>/ thì x>/-2 nên ta có phương trình :

Suy ra : 2x+1-x+2=5

Suy ra : 2x-x=5-1-2

Suy ra : x=2(nhận)

Trường hợp 2: Nếu x+2<0 thì x<-2 nên ta có phương trình :

Suy ra : 2x-1-x-2=5

Suy ra :  2x-x=5+1+2

Suy ra : x= 8(loại)

S=(2)




 

24 tháng 4 2019

\(\left(x-1\right).\left(x+2\right)>\left(x-1\right)^2+3\)

\(\Rightarrow x^2+x-2>x^2-2x+1+3\)

\(\Rightarrow3x>6\Rightarrow x>2\)

Vậy...

\(x.\left(2x-1\right)-8< 5-2x.\left(1-x\right)\)

\(\Rightarrow2x^2-x-8< 5-2x+2x^2\)

\(\Rightarrow x< 13\)

Vậy...

31 tháng 3 2022

bạn tải ảnh về r up lại đi bạn

31 tháng 3 2022

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

24 tháng 4 2019

\(\left(x-4\right).\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Rightarrow x^2-16\ge x^2+6x+9+5\)

\(\Rightarrow x^2-16\ge x^2+6x+14\)

\(\Rightarrow-30\ge6x\Rightarrow-5\ge x\)

Vậy...

1 tháng 9 2020

\(2x-\left(2x^2+x\right)\le15-\left(2x^2+4x\right)\)

\(\Leftrightarrow x=15-4x\Leftrightarrow5x=15\Leftrightarrow x=3\)Vậy phương trình có nghiệm là x=3

1 tháng 9 2020

Ta có: \(2x-x\left(2x+1\right)\le15-2x\left(x+2\right)\)

    \(\Leftrightarrow2x-2x^2-x\le15-2x^2-4x\)

    \(\Leftrightarrow x-2x^2+2x^2+4x\le15\)

    \(\Leftrightarrow5x\le15\)

    \(\Leftrightarrow x\le3\)

Vậy \(S=\left\{\forall x\inℝ/x\le3\right\}\)

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài toán bằng cách lập phương...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

16 tháng 1 2019

\(\left(x^3-27\right)\left(x^3-1\right)\left(2x+3-x^2\right)\ge0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)\left(x-1\right)\left(x^2+x+1\right)\left[4-\left(x-1\right)^2\right]\ge0\)

\(\Leftrightarrow\left(x-3\right)\left[\left(x+\frac{3}{2}\right)^2+\frac{27}{4}\right]\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(4-x+1\right)\left(4+x-1\right)\ge0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\left[...\right]\left[...\right]\ge0\)(1)

Do [...] và [...] > 0

nên \(\left(1\right)\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\ge0\)

               \(\Leftrightarrow\left(x-5\right)\left(x-3\right)\left(x-1\right)\left(x+3\right)\le0\)

Có: \(x-5< x-3< x-1< x+3\)

Nên xảy ra các trường hợp sau :

TH1:\(\hept{\begin{cases}x-5\le0\\x-3\ge0\end{cases}}\)(Tự giải)

TH2:\(\hept{\begin{cases}x-1\le0\\x+3\ge0\end{cases}}\)(Tự giải)

Cuối cùng gộp khoảng (Nếu được)

Kết luận......

29 tháng 7 2019

Mình giải thử thôi nha

\(\frac{\left(2x-1\right)^2}{2}-\frac{\left(1-3x\right)^2}{3}\le x\left(2-x\right)\)

\(\Leftrightarrow3\left(2x-1\right)^2-2\left(1-3x\right)^2\le6x\left(2-x\right)\)

\(\Leftrightarrow12x^2-12x+3-2+12x-18x^2\le12x-6x^2\)

\(\Leftrightarrow-6x^2+1\le12x-6x^2\)

\(\Leftrightarrow1\le12x\)

\(\Leftrightarrow\frac{1}{12}\le x\)

\(\Rightarrow x\ge\frac{1}{12}\)