Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{x}{a}-x>4-a-\dfrac{3}{a}\)
\(\Leftrightarrow x\left(\dfrac{1}{a}-1\right)>\dfrac{4a-a^2-3}{a}\)
- Nếu \(\dfrac{1}{a}-1>0\Leftrightarrow0< a< 1\)
\(\Rightarrow x>\dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-1\right)}\Leftrightarrow x>a-3\)
- Nếu \(\dfrac{1}{a}-1< 0\Leftrightarrow\left[{}\begin{matrix}a< 0\\a>1\end{matrix}\right.\)
\(\Rightarrow x< \dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-a\right)}\Leftrightarrow x< a-3\)
Điều kiện xác định: a ≠ 0.
Ta có:
⇔ x( a + 2 ) > 1/a ( 1 )
+ Nếu a > - 2,a ≠ 0 thì nghiệm của bất phương trình là
+ Nếu a < - 2 thì nghiệm của bất phương trình là
+ Nếu x = - 2 thì ( 1 ) có dạng 0x > - 1/2 luôn đúng với ∀ x ∈ R
ĐKXĐ: x\(\ne3,x\ne-3\)
\(\Rightarrow\left(x-a\right)\left(a-3\right)+\left(x+3\right)\left(a+3\right)=-6a\)
\(\Leftrightarrow xa-3x-a^2+3a+ax+3x+3a+3=-6a\)
\(\Leftrightarrow2ax-a^2+12a+3=0\) \(\Leftrightarrow2ax=a^2-12a-3\Leftrightarrow x=\dfrac{a^2}{2}-6a-\dfrac{3}{2}\)(TM)
Vậy...
\(\dfrac{x+1}{a}+ax>\dfrac{x+2}{a}-2x\)
⇔ \(\dfrac{x}{a}+\dfrac{1}{a}+ax>\dfrac{x}{a}+\dfrac{2}{a}-2x\) ( a # 0)
⇔ \(ax+2x>\dfrac{2}{a}-\dfrac{1}{a}\)
⇔ \(x\left(a+2\right)>\dfrac{1}{a}\) ( 1)
+) Với : a = -2 , ta có :
( 1) ⇔ 0x > \(\dfrac{-1}{2}\) ( Luôn đúng )
+) Với : a > -2 , ta có :
( 1) ⇔x > \(\dfrac{1}{a\left(a+2\right)}\)
+) Với : a < - 2 , ta có :
⇔ x < \(\dfrac{1}{a\left(a+2\right)}\)
KL...
a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\) \(\Leftrightarrow\) \(6\left(\dfrac{2-x}{3}-x-2\right)\le6\left(\dfrac{x-17}{2}\right)\) \(\Leftrightarrow\) 4-2x-6x-12\(\le\)3x-51 \(\Leftrightarrow\) -2x-6x-3x\(\le\)-51-4+12 \(\Leftrightarrow\) -11x\(\le\)-43 \(\Rightarrow\) x\(\ge\)43/11.
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\) \(\Leftrightarrow\) \(12\left(\dfrac{2x+1}{3}+\dfrac{4-x}{4}\right)\le12\left(\dfrac{3x+1}{6}+\dfrac{4-x}{12}\right)\) \(\Leftrightarrow\) 8x+4+12-3x\(\le\)6x+2+4-x \(\Leftrightarrow\) 8x-3x-6x+x\(\le\)2+4-4-12 \(\Leftrightarrow\) 0x\(\le\)-10 (vô lí).
a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\)
\(\Leftrightarrow2\left(2-x\right)-6\left(x+2\right)\le3\left(x-17\right)\)
\(\Leftrightarrow4-2x-6x-12\le3x-51\)
\(\Leftrightarrow-11x\le-43\)
\(\Leftrightarrow x\ge\dfrac{43}{11}\)
Vậy S = {\(x\) | \(x\ge\dfrac{43}{11}\) }
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)
\(\Leftrightarrow4\left(2x+1\right)-3\left(x-4\right)\le2\left(3x+1\right)-\left(x-4\right)\)
\(\Leftrightarrow8x+4-3x+12\le6x+2-x+4\)
\(\Leftrightarrow0x\le-10\) (vô lý)
Vậy \(S=\varnothing\)
a:=>3x=15
=>x=5
b: =>8-11x<52
=>-11x<44
=>x>-4
c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)
\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)
a: =>x^2-8x+16<x^2-8x
=>16<0(loại)
b: =>\(x+\dfrac{1}{2}>=\dfrac{5x-3}{3}\)
=>x+1/2>=5/3x-1
=>-2/3x>=-3/2
=>x<=3/2:2/3=9/4
c: =>\(\dfrac{7-x}{4}< =\dfrac{2x-4}{3}\)
=>21-3x<=8x-16
=>-11x<=-37
=>x>=37/11
ĐKXĐ: \(x\ne1\)
- Với \(a=\pm1\) pt vô nghiệm
- Với \(a\ne1\)
\(\Rightarrow1-x=\dfrac{1+a}{1-a}\)
\(\Leftrightarrow x=1-\dfrac{1+a}{1-a}=\dfrac{-2a}{1-a}\)
Vậy: \(a=\pm1\) hệ vô nghiệm
\(a\ne\pm1\) hệ có nghiệm duy nhất \(x=\dfrac{2a}{a-1}\)
\(\Leftrightarrow\dfrac{2x}{a^2-a+1}+\dfrac{-4x}{2a^2-2a+2a^2}+\dfrac{2ax}{1+a^3}< \dfrac{1}{2a+2}-\dfrac{1}{2a^2-2a+2}+\dfrac{a}{1+a^3}\)
\(\Leftrightarrow\left(\dfrac{2}{a^2-a+1}-\dfrac{4}{2a^2-2a+2}+\dfrac{2a}{1+a^3}\right).x< \left(\dfrac{1}{2a+2}-\dfrac{1}{2a^2-2a+2}+\dfrac{a}{1+a^3}\right)\)
\(\Leftrightarrow\left(\dfrac{2a}{1+a^3}\right)x< \dfrac{\left(a^2-a+1\right)-\left(a+1\right)+2a}{2.\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{a^2}{1+a^3}\)
\(\Leftrightarrow\left(\dfrac{2a}{1+a^3}\right)x< \dfrac{a^2}{2.\left(1+a^3\right)}\)
\(a=0\Rightarrow vo...N_o\)
\(\left\{{}\begin{matrix}\dfrac{2a}{a^3+1}>0\Leftrightarrow\left[{}\begin{matrix}a< -1\\a>0\end{matrix}\right.\\x< \dfrac{a^2}{2\left(a^3+1\right)}:\dfrac{2a}{\left(a^3+1\right)}=\dfrac{a}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2a}{a^3+1}< 0\Rightarrow-1< a< 0\\x>\dfrac{a}{2}\end{matrix}\right.\)
Điều kiện xác định của bất phương trình là a ≠0
Biến đổi :
\(\dfrac{x+1}{a}+ax>\dfrac{x+2}{a}-2x\)
\(\Leftrightarrow\dfrac{x}{a}+\dfrac{1}{a}+ax>\dfrac{x}{a}+\dfrac{2}{a}-2x\)
\(\Leftrightarrow ax+2x>\dfrac{x}{a}-\dfrac{x}{a}+\dfrac{2}{a}-\dfrac{1}{a}\)
\(\Leftrightarrow ax+2x>\dfrac{2}{a}-\dfrac{1}{a}\)
\(\Leftrightarrow\left(a+2\right)x>\dfrac{1}{a}\)
Nếu a>-2, a≠0 thì nghiệm của bất phương trình là x > \(\dfrac{1}{a\left(a+2\right)}\)
Nếu a < -2 thì nghiệm của bất phương trình là x < \(\dfrac{1}{a\left(a+2\right)}\)
Nếu a = -2 thì nghiệm của bất phương trình là 0x\(>-\dfrac{1}{2}\),
Nghiệm đúng với mọi x
thật là thất vọng sao lúc bạn trả lời mình lại off nhỉ