Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :
\(\log_2x+\log_3x+\log_4x=\log_{20}x\)
\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)
\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)
\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)
Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)
Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)
Vậy nghiệm duy nhất của phương trình là \(x=1\)
c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :
\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\log_5x=1\)
\(\Leftrightarrow x=5^1=5\) thỏa mãn
Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)
Xét hàm số : \(f_n\left(x\right)=e^x-1-x-\frac{x^2}{2}-.......-\frac{x^n}{n!}\)
Ta sẽ chứng minh \(f_n\left(x\right)\ge0\) (*) với mọi \(x\ge;n\in N\)
* Với \(n=1:f_1\left(x\right)=e^x-1-x\Rightarrow f_1'\left(x\right)=e^x-1\ge0\) và \(f'\left(x\right)=0\) khi x = 0
\(\Rightarrow\) Hàm số \(f_1\left(x\right)\) đồng biến với \(x\ge0\Rightarrow f_1\left(x\right)\ge f_1\left(0\right)=0\)
Vậy (*) đúng với n = 1
* Giả sử (*) đúng với n = k hay \(f_k\left(x\right)\ge0\), ta cần chứng minh (*) đúng với \(n=k+1\) hay \(f_{k+1}9x=e^x-1-x-\frac{x^2}{2}-...-\frac{x^k}{k!}-\frac{x^{k+1}}{\left(k+1\right)!}\ge0\)
Thật vậy :
\(f_{k+1}'\left(x\right)=e^x-1-x-\frac{x^k}{k!}=f_k\left(x\right)\ge0\) (theo giả thiết quy nạp và \(f'_{k+1}\left(0\right)\ge f_{k+1}\left(0\right)=0\)khi \(x=0\)
\(\Rightarrow\) hàm số \(f_{k+1}\left(x\right)\) đồng biến với mọi \(x\ge0\Rightarrow f_{k+1}\left(x\right)\ge f_{k+1}\left(0\right)=0\) Vậy (*) đúng với n = k+1
Theo phương pháp quy nạp \(\Rightarrow e^x\ge1+x+\frac{x^2}{2}+..+\frac{x^n}{n!}\) với mọi \(x\ge0;n\in N\)
Đặt \(t=\log_2x\) ta có bất phương trình :
\(2t^3+5t^2+t-2\ge0\)
hay
\(\left(t+2\right)\left(2t^2+t-1\right)\ge0\)
Bất phương trình này có nghiệm -2\(\le t\)\(\le-1\) hoặc \(t\ge\frac{1}{2}\)
Suy ra nghiệm của bất phương trình là :
\(\frac{1}{4}\le x\)\(\le\frac{1}{2}\) hoặc \(x\ge\sqrt{2}\)
\(\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{x+1}-3\right)-\log_22^x\)
\(\Leftrightarrow\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{x+1}-3\right)+\log_{\frac{1}{2}}2^x\)
\(\Leftrightarrow\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{2x+1}-3^x\right)\)
\(\Leftrightarrow4^x+4\le2^{2x+1}-3.2^x\)
\(\Leftrightarrow4^x-3.2^x-4\ge0\)
\(\Leftrightarrow\begin{cases}2^x\le-1\left(L\right)\\2^x\ge4\end{cases}\)\(\Leftrightarrow x\ge2\)
Vậy bất phương trình có tập nghiệm \(S=\left(2;+\infty\right)\)
Điều kiện \(x^2-1>0\Leftrightarrow\left|x\right|>1\)
Bất phương trình tương đương với :
\(\log_3\log_{\frac{1}{2}}\left(x^2-1\right)<\log_3\Leftrightarrow0<\log_{\frac{1}{2}}\left(x^2-1\right)<3\)
\(\Leftrightarrow\log_{\frac{1}{2}}1<\log_{\frac{1}{2}}\left(x^2-1\right)<\log_{\frac{1}{2}}\frac{1}{8}\Leftrightarrow1>x^2-1>\frac{1}{8}\)
\(\Leftrightarrow2>x^2>\frac{9}{8}\)
\(\Leftrightarrow\sqrt{2}>\left|x\right|>\frac{3}{2\sqrt{2}}\) (Thỏa mãn)
Vậy tập nghiệm của bất phương trình là \(D=\left(-\sqrt{2};\frac{-3}{2\sqrt{2}}\right)\cup\left(\frac{3}{2\sqrt{2}};\sqrt{2}\right)\)
Biến đổi phương trình về dạng :
\(\frac{\left(\frac{5}{4}\right)^x+1}{\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x}=\frac{3}{2}\)
Nhận thấy \(x=1\) là nghiệm
Nếu \(x>1\) thì \(\left(\frac{5}{4}\right)^x+1>\frac{5}{4}+1=\frac{9}{4}\) và \(\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x<\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{4}\)
Suy ra vế trái >\(\frac{3}{2}\)= vế phải, phương trình vô nghiệm. Tương tự khi x<1.
Đáp số : x=1
Chọn 2 làm cơ số, ta có :
\(A=\log_616=\frac{\log_216}{\log_26}=\frac{4}{1=\log_23}\)
Mặt khác :
\(x=\log_{12}27=\frac{\log_227}{\log_212}=\frac{3\log_23}{2+\log_23}\)
Do đó : \(\log_23=\frac{2x}{3-x}\) suy ra \(A=\frac{4\left(3-x\right)}{3+x}\)
b) Ta có :
\(B=\frac{lg30}{lg125}=\frac{lg10+lg3}{3lg\frac{10}{2}}=\frac{1+lg3}{3\left(1-lg2\right)}=\frac{1+a}{3\left(1-b\right)}\)
c) Ta có :
\(C=\log_65+\log_67=\frac{1}{\frac{1}{\log_25}+\frac{1}{\log_35}}+\frac{1}{\frac{1}{\log_27}+\frac{1}{\log_37}}\)
Ta tính \(\log_25,\log_35,\log_27,\log_37\) theo a, b, c .
Từ : \(a=\log_{27}5=\log_{3^3}5=\frac{1}{3}\log_35\)
Suy ra \(\log_35=3a\) do đó :
\(\log_25=\log_23.\log35=3ac\)
Mặt khác : \(b=\log_87=\log_{2^3}7=\frac{1}{3}\log_27\) nên \(\log_27=3b\)
Do đó : \(\log_37=\frac{\log_27}{\log_23}=\frac{3b}{c}\)
Vậy : \(C=\frac{1}{\frac{1}{3ac}+\frac{1}{3a}}+\frac{1}{\frac{1}{3b}+\frac{c}{3b}}=\frac{3\left(ac+b\right)}{1+c}\)
d) Điều kiện : \(a>0;a\ne0;b>0\)
Từ giả thiết \(\log_ab=\sqrt{3}\) suy ra \(b=a^{\sqrt{3}}\). Do đó :
\(\frac{\sqrt{b}}{a}=a^{\frac{\sqrt{3}}{2}-1};\frac{\sqrt[3]{b}}{\sqrt{a}}=a^{\frac{\sqrt{3}}{3}-\frac{1}{2}}=a^{\frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-1\right)}\)
Từ đó ta tính được :
\(A=\log_{a^{\alpha}}a^{\frac{-\sqrt{3}}{3}\alpha}=\log_{a^{\alpha}}\left(a^{\alpha}\right)^{\frac{-\sqrt{3}}{3}}=\frac{-\sqrt{3}}{3}\) với \(\alpha=\frac{\sqrt{3}}{2}-1\)
Ta có điều kiện của bất phương trình là
\(x^2+2x-8>0\)
Khi đó ta có thể viết bất phương trình dưới dạng :
\(\log_{\frac{1}{2}}\left(x^2+2x-8\right)\ge\log_{\frac{1}{2}}16\)
Vì cơ số \(\frac{1}{2}\) nhỏ hơn 1 nên bất phương trình trên tương đương với hệ
\(\begin{cases}x^2+2x-8>0\\x^2+2x-8\le16\end{cases}\) \(\Leftrightarrow\begin{cases}x<-4Vx>2\\-6\le x\le4\end{cases}\)\(-6\le\)x\(\le-4\) và 2<x\(\le4\)
Vậy tập nghiệm của bất phương trình đã cho là
\(D=\left(-6;4\right)\cup\left(2;4\right)\)
Đổi về Logarit cơ số 10, ta có :
\(\frac{lgx}{lg\frac{1}{5}}+\frac{lgx}{lg4}\ge1\Leftrightarrow\frac{lg5-lg4}{lg5.lg4}.lgx\ge1\)
Từ đó suy ra
\(x\ge10^{\frac{lg5.lg4}{lg5-lg4}}\)