\(\frac{x^2-7x+12}{-x+2}\le0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 5 2019

\(\Leftrightarrow\frac{\left(x-4\right)\left(x-3\right)}{-x+2}\le0\)

\(\Leftrightarrow\frac{\left(x-4\right)\left(x-3\right)}{x-2}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\ge4\\2< x\le3\end{matrix}\right.\)

NV
2 tháng 4 2019

\(\frac{x^2\left(x+2\right)}{\left(x-1\right)\left(2x-1\right)}\le0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x\le-2\\\frac{1}{2}< x< 1\end{matrix}\right.\)

27 tháng 2 2016

\(\Leftrightarrow\) \(\begin{cases}x\le1;2\le x\\-3\le x\le4\\x\le-2;2\le x\end{cases}\)  \(\Leftrightarrow\)  \(\begin{cases}-3\le x\le-2\\2\le x\le4\end{cases}\)

Vậy hệ đã cho có tập nghiệm T = \(\left[-3;-2\right]\cup\left[2;4\right]\)

27 tháng 2 2016

\(\begin{cases}x^2+7x-8\le0\\a^2x+1>3+\left(3a-2\right)x\end{cases}\) (1)

\(\Leftrightarrow\) \(\begin{cases}x^2+7x-8\le0\\\left(a^2-3a+2\right)x>2\end{cases}\)

ta đặt 

\(x^2+7x-8\le0\)  (a)

\(\left(a^2-3a+2\right)x>2\) (b)

(1) Vô nghiệm khi và chỉ khi T(a)\(\cap\)T(b) = \(\varnothing\)

Dễ thấy T(a) = \(\left[-8;1\right]\). Đặt m:=\(a^2-3a+2\), xét các trường hợp sau : 

- Nếu a=1 hoặc a=2 thì 

\(\left(a^2-3a+2\right)x>2\) \(\Leftrightarrow\) 0.x > 2 \(\Rightarrow\) T ( b) = \(\varnothing\) nên (1) vô nghiệm

- Nếu \(a\in\left(-\infty;1\right)\cup\left(2;+\infty\right):=\)(*) thì m >0 nên T(b) có nghiệm \(x>\frac{2}{m}\) Ta có :

T(a)\(\cap\) T(b) = \(\varnothing\)   \(\Leftrightarrow\)  \(\frac{2}{m}\ge1\)

                             \(\Leftrightarrow\)  \(2\ge m=a^2-3a+2\) ( do m>0 trong (*)

                            \(\Leftrightarrow\) \(a^2-3a\le0\)  \(\Leftrightarrow\)  \(0\le a\le3\)

Kết hợp với điều kiện \(a\in\)(*) được \(0\le a<1\) hoặc 2<a\(\le\)3

- Nếu \(a\in\)(1;2) thì m<0 nên T(b) có nghiệm \(x<\frac{2}{m}\) Ta có T(a)\(\cap\) T(b) = \(\varnothing\)   \(\Leftrightarrow\)  \(\frac{2}{m}\le-8\)

\(\Leftrightarrow\) \(2\ge-8m=-8\left(a^2-3a+2\right)\) (do m<0 trong (1;2) 

\(\Leftrightarrow\) \(4a^2-12a+9\ge0\)  \(\Leftrightarrow\) \(\left(2a-3\right)^2\ge0\) luôn đúng

Vậy với  \(a\in\)(1;2) thì (1) vô nghiệm. Tóm lại ta được 0\(\le a\le\)3 là các giá trị cần tìm

 

 

NV
3 tháng 4 2020

a/ \(\Leftrightarrow\left(4-x\right)\left(x+1\right)\left(x-8\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}x< -1\\4< x< 8\end{matrix}\right.\)

b/ \(\frac{1-2x}{x}\le0\Rightarrow\left[{}\begin{matrix}x\ge\frac{1}{2}\\x< 0\end{matrix}\right.\)

c/ \(\left|2x+1\right|< 3x\)

- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x>0\Rightarrow2x+1>0\)

\(BPT\Leftrightarrow2x+1< 3x\Rightarrow x>1\)

d/ \(\sqrt{3x+1}\le x+1\)

ĐKXĐ: \(x\ge-\frac{1}{3}\)

DO 2 vế của BPT ko âm, bình phương 2 vế:

\(\left(x+1\right)^2\ge3x+1\)

\(\Leftrightarrow x^2-x\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\)

Kết hợp ĐKXĐ \(\Rightarrow\left[{}\begin{matrix}-\frac{1}{3}\le x\le0̸\\x\ge1\end{matrix}\right.\)

27 tháng 2 2016

\(\frac{x^3+4x^2+x-6}{x^3-4x^2+x+6}\le0\Rightarrow\frac{\left(x-1\right)\left(x+2\right)\left(x+3\right)}{\left(x+1\right)\left(x-3\right)\left(x-2\right)}\le0\)

Tới đây bạn lập bảng xét dấu là ra