K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

\(\frac{x-1}{3}-\frac{3x+5}{2}\ge1-\frac{4x+5}{6}\)

\(\Leftrightarrow\frac{2x-2}{6}-\frac{9x+15}{6}\ge\frac{6-4x-5}{6}\)

\(\Rightarrow2x-2-9x-15\ge1-4x\)

\(\Leftrightarrow-3x\ge18\Leftrightarrow x\le-6\)

4 tháng 4 2021

\(\frac{x-1}{3}-\frac{3x+5}{2}\ge1-\frac{4x+5}{6}\)

<=> \(\frac{1}{3}x-\frac{1}{3}-\frac{3}{2}x-\frac{5}{2}\ge1-\frac{2}{3}x-\frac{5}{6}\)

<=> \(\frac{1}{3}x-\frac{3}{2}x+\frac{2}{3}x\ge1-\frac{5}{6}+\frac{1}{3}+\frac{5}{2}\)

<=> \(-\frac{1}{2}x\ge3\)<=> \(x\le-6\)

Vậy ...

22 tháng 1 2022

\(a,4x-6< 7x-12\)

\(\Leftrightarrow6< 3x\Leftrightarrow x>2\)

\(b,\frac{3x-7}{4}\ge2-\frac{x+5}{3}\)

\(\Leftrightarrow3\left(3x-7\right)\ge24-4\left(x+5\right)\)

\(\Leftrightarrow13x\ge25\Leftrightarrow x\ge\frac{25}{13}\)

\(c,\frac{3x-8}{-7}\ge1-\frac{x+2}{-3}\)

\(\Leftrightarrow-3\left(3x-8\right)\ge21+7\left(x+2\right)\)

\(\Leftrightarrow-16x\ge11\)

\(\Leftrightarrow x\le-\frac{11}{16}\)

\(d,-12-8x>3+2x-\left(5-7x\right)\)

\(\Leftrightarrow14>17x\Leftrightarrow x< \frac{14}{17}\)

\(e,-1+\frac{x-1}{-3}\le\frac{x+2}{-9}\)

\(\Leftrightarrow-9-3\left(x-1\right)\le-\left(x+2\right)\)

\(\Leftrightarrow-2x\le4\Leftrightarrow x\ge-2\)

26 tháng 4 2021

   404 ERROR

AH SHIT

26 tháng 4 2021

damnnnn this sus

24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!

21 tháng 7 2019

\(\frac{3x-5}{4x+1}-\frac{x-2}{3x-5}=0\)

\(\Rightarrow\frac{3x-5}{4x+1}=\frac{x-2}{3x-5}\)

\(\Rightarrow\left(3x-5\right)^2=\left(4x+1\right)\left(x-2\right)\)

\(\Rightarrow9x^2-30x+25=4x^2+7x-2\)

\(\Rightarrow5x^2-37x+27=0\)

Sai đề ???

21 tháng 7 2019

Cái phần của chị Linh :) là đúng nhưng cái phần gần cuối hình như chị sai chị giải cách bất phương trình hơi khó hiểu

Còn lại em nghĩ sai đề?

Bài này hơi khó nên em nghĩ thế thoi ạ -.-

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x 

a, Đặt \(x^2-4x+8=a\left(a>0\right)\)

\(\Rightarrow a-2=\frac{21}{a+2}\)

\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)

Thay vào là ra

9 tháng 3 2020

b) ĐK: \(y\ne1\)

bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)

<=> \(\frac{3y^2-3y}{1-y^3}\le0\)

\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)

\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)

vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

nên bpt <=> \(y\ge0\)

20 tháng 9 2020

1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow-7x+3=-4x-15\)

\(\Leftrightarrow-7x+4x=-15-3\)

\(\Leftrightarrow-3x=-18\)

\(\Leftrightarrow x=6\)( tmđk )

Vậy x = 6 là nghiệm của phương trình

2) 2x + 3 < 6 - ( 3 - 4x )

<=> 2x + 3 < 6 - 3 + 4x

<=> 2x - 4x < 6 - 3 - 3

<=> -2x < 0

<=> x > 0

Vậy nghiệm của bất phương trình là x > 0