Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g'(x) là đạo hàm của g(x) phải không bạn? Xét đạo hàm tới 2 lần lận à?
7.
\(V=\frac{\left(a\sqrt{2}\right)^3\pi.\sqrt{2}}{3}=\frac{4\pi a^3}{3}\)
8.
Mệnh đề B sai
Mệnh đề đúng là: \(lnx< 1\Rightarrow0< x< e\)
9.
\(\overline{z}=5-2i\Rightarrow z=5+2i\Rightarrow\left|z\right|=\sqrt{5^2+2^2}=\sqrt{29}\)
10.
\(\overrightarrow{NM}=\left(1;-3;-2\right)\) nên đường thẳng MN nhận \(\left(1;-3;-2\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=t\\y=1-3t\\z=3-2t\end{matrix}\right.\)
4.
\(V=3.4.5=60\)
5.
\(\left\{{}\begin{matrix}log_8a+2log_4b=5\\log_8b+2log_4a=7\end{matrix}\right.\)
\(\Rightarrow log_8a-log_8b-2\left(log_4a-log_4b\right)=-2\)
\(\Leftrightarrow log_8\frac{a}{b}-2log_4\frac{a}{b}=-2\)
\(\Leftrightarrow\frac{1}{3}log_2\frac{a}{b}-log_2\frac{a}{b}=-2\)
\(\Leftrightarrow-\frac{2}{3}log_2\frac{a}{b}=-2\)
\(\Leftrightarrow log_2\frac{a}{b}=3\)
\(\Rightarrow\frac{a}{b}=8\)
6.
\(log_{\frac{1}{5}}x=t\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}log_{\frac{1}{5}}x=-1\\log_{\frac{1}{5}}x=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{125}\end{matrix}\right.\)
câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi
Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?
Đáp án D chứ sao nữa
Câu 2:
$y'=-3x^2+6x+(m-2)=0$
Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$
Hai điểm cực trị cùng dương khi:
\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)
Từ $(1);(2)\Rightarrow -1< m< 2$
Đáp án C.
Câu 2:
Để đths có 2 điểm cực trị thì trước tiên:
$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$
Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$
Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$
$\Leftrightarrow m^2-4< 0$
$\Leftrightarrow -2< m< 2$
Đáp án A.