Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\) = \(\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)= 1 + \(\frac{2x}{x^2+1}\)\(\le\)0
đến đây bn tự giải nha
mk nha và kb nhé
\(\left(x-2\right)\left(4-x\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2< 0\\4-x< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x< 4\end{matrix}\right.\)
\(\left(x-2\right)\left(4-x\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2< 0\\4-x>0\end{matrix}\right.hay\left[{}\begin{matrix}x-2>0\\4-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 2\\x< 4\end{matrix}\right.hay\left[{}\begin{matrix}x>2\\x>4\end{matrix}\right.\)
\(\Leftrightarrow x< 2\) hay \(x>4\)
-Vậy nghiệm của BĐT là x>4 hay x<2.
\(a,3x-2\ge x+4\) => \(2x\ge6\)=>\(x\ge3\)
\(x^2-2x+1< 9\)
\(\Leftrightarrow\left(x-1\right)^2< 9\)
\(\Leftrightarrow x-1< 3\)
\(\Leftrightarrow x< 4\)
\(\left(x-1\right)\left(4-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(2-x\right)\left(2+x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2-x=0\\2+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
\(\dfrac{x+2}{x-5}< 0\)
\(\Leftrightarrow x+2< 0\)
\(\Leftrightarrow x< -2\)
a)\(x^2-2x+1< 9\)
\(\Leftrightarrow\left(x-1\right)^2< 9\)
\(\Leftrightarrow\left(x-1\right)^2-9< 0\)
\(\Leftrightarrow\left(x-1-3\right)\left(x-1+3\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4< 0\\x+2>0\end{matrix}\right.hay\left[{}\begin{matrix}x-4>0\\x+2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 4\\x>-2\end{matrix}\right.hay\left[{}\begin{matrix}x>4\\x< -2\end{matrix}\right.\)(vô lý)
-Vậy nghiệm của BĐT là \(-2< x< 4\).
b) \(\left(x-1\right)\left(4-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(2-x\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x-2>0\\x+2>0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}x-1>0\\x-2< 0\\x+2>0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}x-1>0\\x-2 >0\\x+2< 0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}x-1< 0\\x-2< 0\\x+2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>2\\x>-2\end{matrix}\right.\) (vô lí) hay \(\left[{}\begin{matrix}x>1\\x< 2\\x>-2\end{matrix}\right.\) (có thể xảy ra) hay
\(\left[{}\begin{matrix}x>1\\x>2\\x< -2\end{matrix}\right.\) (vô lí) hay \(\left[{}\begin{matrix}x< 1\\x< 2\\x< -2\end{matrix}\right.\) (có thể xảy ra)
-Vậy nghiệm của BĐT là \(x< -2\) hay \(1< x< 2\).
c) ĐKXĐ: \(x\ne5\)
\(\dfrac{x+2}{x-5}< 0\Leftrightarrow\left[{}\begin{matrix}x+2< 0\\x-5>0\end{matrix}\right.hay\left[{}\begin{matrix}x+2>0\\x-5< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -2\\x>5\end{matrix}\right.\)(vô lí) hay
\(\left[{}\begin{matrix}x>-2\\x< 5\end{matrix}\right.\) (có thể xảy ra)
-Vậy nghiệm của BĐT là \(-2< x< 5\)
\(x-1-4-x+6\ge0.\) quy đồng
Sau khi loại bỏ những điều vô lí điều còn lại dù khó tin đến đâu nhưng nó vẫn là sự thật
1 đề ngu
2 đề sai
\(\frac{x-1}{2}-\frac{4+x}{2}+3\ge0\)
\(\frac{-5}{2}+3=\frac{1}{2}\ge0\)
(x-6)(2x+4)=0
tương đương với
+ x-6=
<=> x=6
+ 2x+4=0
<=> 2x=-4
<=> x=-2
vậy nghiệm của phương trình là -2;6
Ta có (x2 - 4)(x - 3) ≥ 0 Û (x - 2)(x + 2)(x - 3) ≥ 0
Ta có
X - 2 = 0 Û x = 2; x - 3 = 0 Û x = 3; x + 2 = 0 Û x = -2
Bảng xét dấu
Từ bảng xét dấu ta có (x2 - 4)(x - 3) ≥ 0 Û -2 ≤ x ≤ 2 hoặc x ≥ 3.
Đáp án cần chọn là: A
\(\frac{x}{4-x}< 0\left(x\ne4\right)\)
+) \(\hept{\begin{cases}x>0\\4-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>4\end{cases}\Rightarrow}x>4}\)
+) \(\hept{\begin{cases}x< 0\\4-x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 4\end{cases}\Rightarrow}x< 0}\)
vậy x > 4 hoặc x < 0 thì ....
Bài làm
Ta có: \(\frac{x}{4-x}< 0\)
\(\Leftrightarrow\frac{x}{4-x}.\left(4-x\right)< 0.\left(4-x\right)\)
\(\Leftrightarrow4x-x^2< 0\)
\(\Leftrightarrow x\left(4-x\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x< 0\\4-x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x< 4\end{cases}}\)
Vậy nghiệm phương trình là: x < 0 hoặc x<4
# Mik chưa học bài này, nên nếu sai thì cho xin lỗi #