\(\dfrac{x+4}{2016}+\dfrac{x+2}{2018}\ge\dfrac{x+14}{2006}+\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

\(\dfrac{x+4}{2016}+\dfrac{x+2}{2018}\ge\dfrac{x+14}{2006}+\dfrac{x+83}{1937}\)

\(\Leftrightarrow\dfrac{x+4}{2016}+1+\dfrac{x+2}{2018}+1\ge\dfrac{x+14}{2006}+1+\dfrac{x+83}{1937}+1\)

\(\Leftrightarrow\dfrac{x+2020}{2016}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{2006}-\dfrac{x+2020}{1937}\ge0\)

\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2016}+\dfrac{1}{2018}-\dfrac{1}{2006}-\dfrac{1}{1937}\right)\ge0\)

\(\Leftrightarrow x+2020\ge0\Leftrightarrow x\ge-2020\)

Vậy \(x\ge-2020\)

26 tháng 1 2019

\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)

\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)

Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy...

22 tháng 4 2017

Giải bài 41 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

25 tháng 4 2018

Giải bài 41 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

17 tháng 4 2017

sai đề ko bn

27 tháng 1 2019

\(\dfrac{x+1}{2019}+\dfrac{x+2}{2018}=\dfrac{x+2017}{3}+\dfrac{x+2016}{4}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2016}{4}+1\right)\)

\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{3}-\dfrac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x+2020=0\) ( do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\))

\(\Leftrightarrow x=-2020\)

Vậy phương trình có tập nghiệm S = \(\left\{-2020\right\}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2019

Bài 1:
\(\frac{99-x}{101}+\frac{97-x}{103}+\frac{95-x}{105}+\frac{93-x}{107}=-4\)

\(\Leftrightarrow \frac{99-x}{101}+1+\frac{97-x}{103}+1+\frac{95-x}{105}+1+\frac{93-x}{107}+1=0\)

\(\Leftrightarrow \frac{99-x+101}{101}+\frac{97-x+103}{103}+\frac{95-x+105}{105}+\frac{93-x+107}{107}=0\)

\(\Leftrightarrow \frac{200-x}{101}+\frac{200-x}{103}+\frac{200-x}{105}+\frac{200-x}{107}=0\)

\(\Leftrightarrow (200-x)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)

\(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\neq 0\) nên suy ra \(200-x=0\Rightarrow x=200\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2019

Bài 2:

\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+116}{4}=0\)

\(\Leftrightarrow \frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)

\(\Leftrightarrow \frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)

\(\Leftrightarrow (x+100)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)

\(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\neq 0\). Do đó \(x+100=0\Rightarrow x=-100\)

13 tháng 12 2018

\(\dfrac{x+2}{89}+\dfrac{x+5}{86}>\dfrac{x+8}{83}+\dfrac{x+11}{80}\)

\(\Leftrightarrow\dfrac{x+91}{89}+\dfrac{x+91}{86}>\dfrac{x+91}{83}+\dfrac{x+91}{80}\)

\(\Leftrightarrow\left(x+91\right)\left(\dfrac{1}{89}+\dfrac{1}{86}\right)>\left(x+91\right)\left(\dfrac{1}{83}+\dfrac{1}{80}\right)\)

\(\dfrac{1}{89}+\dfrac{1}{86}< \dfrac{1}{83}+\dfrac{1}{80}\)

Nên \(x+91< 0\Leftrightarrow x< -91\)

31 tháng 12 2018

\(\dfrac{x}{3}+\dfrac{2x-4}{4}\ge\dfrac{x}{6}+x\)

\(\dfrac{2x}{6}+\dfrac{x}{2}-1\ge\dfrac{x}{6}+\dfrac{2x}{2}\)

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{x}{6}+\dfrac{x}{2}-\dfrac{2x}{2}\ge1\)

\(\Leftrightarrow\dfrac{x}{6}-\dfrac{x}{2}\ge1\)

\(\Leftrightarrow\dfrac{x-3x}{6}\ge1\)

\(\Leftrightarrow-2x\ge6\)

\(\Leftrightarrow x\ge-3\)

Vậy BPT có tập nghiệm là ;\(S=\left\{x\ge-3\right\}\)

31 tháng 12 2018

cảm ơn nghen

19 tháng 8 2017

b) \(x,y\ge1\Rightarrow xy\ge1\)

BĐT đã cho tương đương với:

\(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow+\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

BĐT cuối luôn đúng nên ta có đpcm

Đẳng thức xảy ra khi x=y hoặc xy=1