\(2x^2-6x+5>0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

Giao lưu:

Nhân 2

\(\Leftrightarrow y^2-6y+10>0\)

(y-3)^2+1>0 => dúng với mọi y=> đúng với mọi x

21 tháng 12 2016

E rằng ngonhuminh không bắt được cái gió mùa này rồi:

\(2x^2-6x+5>0\Leftrightarrow4x^2-12x+10>0\Leftrightarrow\left(2x-3\right)^2+1>0\)

Ta có \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1>0\)

Vậy bất phương trình đã cho nguyện đúng với mọi x.

16 tháng 3 2017

a, x\(^2\) \(-\)4x\(-\)5<0

\(\Leftrightarrow\)x\(^2\) \(-\)4x+4 <9

\(\Leftrightarrow\) (x\(-\)2)\(^2\)<9

\(\Leftrightarrow\) \(|\) x \(-\)2 \(|\) < 3

\(\Leftrightarrow\)\(-\)3< x\(-\)2<3

\(\Leftrightarrow\) \(-\)1< x <5

Vậy nghiệm của bất phương trình là\(-\) 1< x <5.

b, 2x\(^2\)\(-\)6x+5 > 0

\(\Leftrightarrow\) 4x\(^2\)\(-\)12x+10 < 0

\(\Leftrightarrow\) (2x\(-\)3) \(^2\) +1 > 0.

Vì bất phương trình cuối nghiệm đúng với mọi x nên bất phương trình đã cho nghiệm đúng với mọi x hay có vô số nghiệm ,

16 tháng 3 2017

nhưng

16 tháng 3 2017

đề sai ban ơi

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

20 tháng 10 2020

a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)  (đk: \(x\ge0\))

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)

\(\Leftrightarrow x=9\)(tmđk)

vậy nghiệm của phtrinh là x = 9

20 tháng 10 2020

b) \(\sqrt{x^2-6x+9}=6\)     (đk: \(x^2-6x+9\ge0\))

bình phương 2 vế, ta được: \(x^2-6x+9=36\)

\(\Leftrightarrow x^2-6x-27=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+3\right)=0\)

\(\Leftrightarrow x=9\)hoặc \(x=-3\)

a)

5x2−3x=0⇔x(5x−3)=05x2−3x=0⇔x(5x−3)=0

⇔ x = 0 hoặc 5x – 3 =0

⇔ x = 0 hoặc x=35.x=35. Vậy phương trình có hai nghiệm: x1=0;x2=35x1=0;x2=35

Δ=(−3)2−4.5.0=9>0√Δ=√9=3x1=3+32.5=610=35x2=3−32.5=010=0Δ=(−3)2−4.5.0=9>0Δ=9=3x1=3+32.5=610=35x2=3−32.5=010=0

b)

3√5x2+6x=0⇔3x(√5x+2)=035x2+6x=0⇔3x(5x+2)=0

⇔ x = 0 hoặc √5x+2=05x+2=0

⇔ x = 0 hoặc x=−2√55x=−255

Vậy phương trình có hai nghiệm: x1=0;x2=−2√55x1=0;x2=−255

Δ=62−4.3√5.0=36>0√Δ=√36=6x1=−6+62.3√5=06√5=0x2=−6−62.3√5=−126√5=−2√55Δ=62−4.35.0=36>0Δ=36=6x1=−6+62.35=065=0x2=−6−62.35=−1265=−255

c)

2x2+7x=0⇔x(2x+7)=02x2+7x=0⇔x(2x+7)=0

⇔ x = 0 hoặc 2x + 7 = 0

⇔ x = 0 hoặc x=−72x=−72

Vậy phương trình có hai nghiệm: x1=0;x2=−72x1=0;x2=−72

Δ=72−4.2.0=49>0√Δ=√49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72Δ=72−4.2.0=49>0Δ=49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72

d)

2x2−√2x=0⇔x(2x−√2)=02x2−2x=0⇔x(2x−2)=0

⇔ x = 0 hoặc 2x−√2=02x−2=0

⇔ x = 0 hoặc x=√22x=22

Δ=(−√2)2−4.2.0=2>0√Δ=√2x1=√2+√22.2=2√24=√22x2=√2−√22.2=04=0

NV
17 tháng 10 2019

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(3-x\right)^2}=1\)

\(\Leftrightarrow\left|x-1\right|+\left|3-x\right|=1\)

\(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2>1\)

\(\Rightarrow\) Phương trình vô nghiệm

2/ \(\Leftrightarrow\left(2x-3\right)\left(x^2-x+1\right)< 0\) (1)

Do \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\left(1\right)\Leftrightarrow2x-3< 0\)

\(\Rightarrow x< \frac{3}{2}\)