K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{5}=\dfrac{CD}{12}\)

mà BD+CD=BC=13cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{5}=\dfrac{CD}{12}=\dfrac{BD+CD}{5+12}=\dfrac{13}{17}\)

=>\(BD=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right);CD=\dfrac{13}{17}\cdot12=\dfrac{156}{17}\left(cm\right)\)

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

\(\widehat{DCE}\) chung

Do đó: ΔCDE~ΔCAB

=>\(k=\dfrac{CD}{CA}=\dfrac{156}{17}:12=\dfrac{13}{17}\)

c: ΔCDE~ΔCAB

=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)

=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)

Xét ΔCDA và ΔCEB có

\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)

\(\widehat{C}\) chung

Do đó: ΔCDA~ΔCEB

=>\(\dfrac{DA}{EB}=\dfrac{CA}{CB}\)

=>\(DA\cdot CB=BE\cdot AC\)

d: ΔCDE~ΔCAB

=>\(\dfrac{DE}{AB}=\dfrac{CD}{CA}\)

=>\(\dfrac{DE}{5}=\dfrac{156}{17}:12=\dfrac{13}{17}\)

=>\(DE=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right)\)

Xét tứ giác ABDE có \(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)

nên ABDE là tứ giác nội tiếp

=>\(\widehat{DEB}=\widehat{DAB}=45^0\)

Xét ΔDEB vuông tại D có \(\widehat{DEB}=45^0\)

nên ΔDEB vuông cân tại D

ΔBDE vuông cân tại D

=>\(S_{BDE}=\dfrac{1}{2}\cdot DB\cdot DE=\dfrac{1}{2}\cdot DB^2=\dfrac{1}{2}\cdot\left(\dfrac{65}{17}\right)^2=\dfrac{1}{2}\cdot\dfrac{4225}{289}=\dfrac{4225}{578}\left(cm^2\right)\)

31 tháng 7 2016

Bạn gì ơi, làm quen nha ^^

31 tháng 3 2019

A B C D 6 8 E H

a)BC=AB2+AC2  ( định lí Pitago)

=> BC=10

Dựa vào t/c đường phân giác ta có

AB/AD=BC/DC=AB+BC/ AD+DC= 16/8=2

=> AD= 3; DC=5

=>AD/DC= 3/5

b)có GÓC A =GOC E= 90 ĐỘ

VÀ GÓC ABD =GÓC EBC (VÌ BD LA BD GÓC ABC)

=>TG ABD đồng dạng tam giác EBC(gg)

c) d) cũng khá dễ nên bạn tự làm nha (gợi ý kết hợp b,c để gải d)

8 tháng 4 2022

a)Xét △ABC vuông tại A (gt)

=> BC2 = AB2 + AC2 (định lý Pytago)

     BC2 = 52 + 122 = 25 + 144 = 169

=> BC = \(\sqrt{169}\) = 13 cm

Xét △ABC có BF là tia phân giác của góc ABC (gt)

=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)

=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)

=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm

b)Xét △ABF và △HBE có:

góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)

góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)

=> △ABF ∼ △HBE (g.g)

c) Vì △ABF ∼ △HBE (câu b)

=> góc BFA bằng góc BEH

mà góc AEF bằng góc BEH (2 góc đối đỉnh)

=> góc BFA bằng góc AEF

=> △AEF cân tại A

d)Xét △ABC và △AHB có:

góc ABC chung

góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)

=> △ABC ∼ △HBA (g.g)

=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)

Xét △ABH có BE là tia phân giác của góc ABC (gt)

=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)

Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)

=> AB.AE=BC.HE(chắc vậy?)

8 tháng 4 2022

câu d sai đề à????

a:

Ta có: DE\(\perp\)AC

AB\(\perp\)AC

Do đó: DE//AB

Xét ΔCAB có ED//AB

nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)

=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)

b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có

\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)

Do đó: ΔHBA~ΔEDC

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj