K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

gọi thời gian đội1;đội 2 làm riêng hoàn thành công việc lần lượt là x;y(h)

đk: x;y>0

năng suất làm riêng của đội 1 là: 1/x (công việc/h)

năng suất làm riêng của đội 2 là: 1/y (công việc/h)

năng suất làm chung của cả 2 đội là: \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)(công việc/h)

thời gian 2 đội làm chung hoàn thành công việc là:\(\frac{xy}{x+y}\left(h\right)\)

vì nếu 2 đội làm chung thì sau 4h hoàn thành nên ta có phương trình:

\(\frac{xy}{x+y}=4\Leftrightarrow4x+4y=xy\)(1)

khối lượng công việc đội 1 làm riêng được trong 2h là: 2/x (công việc)

khối lượng công việc đội 2 làm riêng được trong 3h là: 3/y(công việc)

vì nếu đội1 ; đội 2 lần lượt làm riêng trong 2h; 3h thì hoàn thành được 7/12 công việc nên ta có phương trình:

\(\frac{2}{x}+\frac{3}{y}=\frac{7}{12}\) \(\Leftrightarrow36x+24y=7xy\)(2)

từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}4x+4y=xy\\36x+24y=7xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)(tm)

vậy thời gian đội1;đội 2 làm riêng hoàn thành công việc lần lượt là 6h;12h

7 tháng 7 2018

Gọi x (giờ) là thời gian đội I làm một mình xong công việc (x > 12)

Thời gian đội thứ II làm một mình xong công việc là: x – 7 (giờ)

Trong một giờ đội I làm được 1/x (công việc)

Trong một giờ đội II làm được 1/(x-7) (công việc)

Trong một giờ cả hai đội làm được 1/12 (công việc)

Theo bài ra ta có phương trình:

Vậy thời gian đội I làm xong công việc là 28 giờ, thời gian đội II làm xong công việc là: 28 – 7 = 21 (giờ)

Đáp án: C

Gọi a(giờ) là thời gian đội 1 hoàn thành công việc khi làm riêng

Gọi b(giờ) là thời gian đội 2 hoàn thành công việc khi làm riêng

(Điều kiện: a>0; b>0)

Trong 1 giờ, đội 1 làm được: \(\dfrac{1}{a}\)(công việc)

Trong 1 giờ, đội 2 làm được: \(\dfrac{1}{b}\)(công việc)

Trong 1 giờ, hai đội làm được: \(\dfrac{1}{4}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{4}\)(1)

Vì khi đội 1 làm trong 2 giờ, sau đó đội 2 làm một mình trong 3 giờ thì họ hoàn thành được \(\dfrac{7}{12}\) công việc nên ta có phương trình:

\(\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{7}{12}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{4}\\\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{2}{b}=\dfrac{1}{2}\\\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{7}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{b}=-\dfrac{1}{12}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=12\\\dfrac{1}{a}=\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=12\end{matrix}\right.\)(thỏa ĐK)

Vậy: Đội 1 cần 6 giờ để hoàn thành công việc khi làm một mình

Đội 2 cần 12 giờ để hoàn thành công việc khi làm một mình

NV
8 tháng 1 2023

Gọi thời gian làm riêng để hoàn thành công việc của đội 1 là x>0 (ngày), đội 2 là y>0 (ngày)

Trong 1 ngày hai đội lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc

Do 2 đội làm chung thì hoàn thành sau 12 ngày nên: \(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)

Do đội 1 hoàn thành chậm hơn đội 2 là 10 ngày nên: \(x=y+10\)

Ta có hệ pt:

\(\left\{{}\begin{matrix}12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\\x=y+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}12\left(\dfrac{1}{y+10}+\dfrac{1}{y}\right)=1\\x=y+10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}12\left(2y+10\right)=y\left(y+10\right)\\x=y+10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2-14y-120=0\\x=y+10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=20\\x=30\end{matrix}\right.\)

Gọi thời gian mà đội 1 làm một mình xong cv là x (ngày) x > 0

Gọi thời gian mà đội 2 làm một mình xong cv là y (ngày) y > 0

Một ngày cả hai đội làm được 1/x + 1/y = 1/12 cv (1)

Nếu làm riêng 1 mình đội 1 nhanh hơn đội 2 là 7 ngày nên: x + 7 = y (2)

Giải hệ 2 pt trên ta được x = 21, y = 28

21 tháng 11 2021

Gọi x ( giờ ) là thời gian đội 1 làm một mình xong công việc ( x > 12 )

Thời gian đội thứ 2 làm một mình xong công việc là : \(x-7\left(giờ\right)\) 

Trong một giờ đội 1 làm được \(\dfrac{1}{x}\left(\text{công việc}\right)\)

Trong một giờ đội 2 làm được \(\dfrac{1}{x-7}\left(\text{công việc}\right)\)

Trong một giờ cả hai đội làm được \(\dfrac{1}{12}\left(\text{công việc}\right)\)

Theo bài ra ta có pt : \(\dfrac{1}{x}+\dfrac{1}{x-7}=\dfrac{1}{12}\Leftrightarrow12\left(x-7\right)+12x=x\left(x-7\right)\Leftrightarrow x^2-31x+84=0\Leftrightarrow\left\{{}\begin{matrix}x=28\left(N\right)\\x=3\left(L\right)\end{matrix}\right.\)

Vậy thời gian đội 1 làm xong công việc là 8 giờ , thời gian đội 2 làm xong công việc là : \(28-7=21\left(giờ\right)\) 

23 tháng 12 2018

Gọi thời gian đội 1 và đội 2 hoàn thành công việc một mình lần lượt là x(ngày), y( ngày)(x,y>12)

Mỗi ngày đội 1 làm được phẫn việc là 1/x

Đội 2 làm được số phần việc là 1/y

cả hai đội làm được số phần việc là 1/12

ta có phương trình: 1/x+1/y=1/12(1)

Đội 1 làm trong 5 ngày rồi nghỉ, dội 2 làm tiếp 15 ngày thì họ làm được 75%công việc

từ đó ta có phương trình: 5/x+15/y=3/4(2)

Từ (1)(2) ta có hệ phương trình:{1/x+1/y=1/12; 5/x+15/y=3/4

Giải hệ pt ta tìm được x=20; y=30

KL:Nếu làm một mình thì đội thứ nhất hoàn thành công việc trong 20 ngày, đội thứ hai hoàn thành công việc trong 30 ngày.

NV
18 tháng 1

Gọi thời gian làm 1 mình xong việc của đội 1 là x ngày và của đội 2 là y ngày (với x>10;y>0)

Trong 1 ngày đội 1 làm được \(\dfrac{1}{x}\) phần công việc và đội 2 làm được \(\dfrac{1}{y}\) phần công việc

Do làm riêng đội 1 làm chậm hơn đội 2 là 10 ngày nên ta có:

\(x-y=10\) (1)

Hai đội làm chung trong 1 ngày được \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc

Do 2 đội làm chung thì hoàn thành trong 12 ngày nên ta có:

\(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\) (2)

Từ (1) và (2) ta có hệ:

\(\left\{{}\begin{matrix}x-y=10\\12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-10\\12\left(x+y\right)=xy\end{matrix}\right.\)

Thế pt trên xuống pt dưới:

\(12\left(x+x-10\right)=x\left(x-10\right)\)

\(\Leftrightarrow x^2-34x+120=0\Rightarrow\left[{}\begin{matrix}x=30\\x=4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow y=x-10=20\)

Vậy đội 1 làm 1 mình xong trong 30 ngày và đội 2 xong trong 20 ngày

Gọi thời gian làm riêng hoàn thành công việc của đội một là x(ngày)

(Điều kiện: x>10)

Thời gian làm riêng hoàn thành công việc của đội 2 là x-10(ngày)

Trong 1 ngày, đội 1 làm được \(\dfrac{1}{x}\left(côngviệc\right)\)

Trong 1 ngày, đội 2 làm được \(\dfrac{1}{x-10}\left(côngviệc\right)\)

Trong 1 ngày, hai đội làm được \(\dfrac{1}{12}\left(côngviệc\right)\)

Do đó, ta có phương trình:

\(\dfrac{1}{x}+\dfrac{1}{x-10}=\dfrac{1}{12}\)

=>\(\dfrac{x-10+x}{x\left(x-10\right)}=\dfrac{1}{12}\)

=>\(x\left(x-10\right)=12\left(2x-10\right)\)

=>\(x^2-10x=24x-120\)

=>\(x^2-34x+120=0\)

=>(x-30)(x-4)=0

=>\(\left[{}\begin{matrix}x-30=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Vậy: Thời gian làm riêng hoàn thành công việc của đội 1 là 30 ngày

Thời gian làm riêng hoàn thành công việc của đội 2 là 30-10=20 ngày