K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2024

Gọi độ dài cạnh lăng trụ là a

Trong mp (ABC), lấy D đối xứng B qua AC \(\Rightarrow ABCD\) là hình thoi

Trong mp (A'B'C') lấy D' đối xứng B' qua A'C' \(\Rightarrow A'B'C'D'\) là hình thoi

\(\Rightarrow A'BCD'\) là hình bình hành nên \(A'B||D'C\)

\(\Rightarrow\left(A'B,B'C\right)=\left(D'C,B'C\right)=\widehat{B'CD'}\) (nếu nó nhọn, và bằng góc bù với nó nếu nó tù)

\(D'C=A'B=\sqrt{A'A^2+AB^2}=a\sqrt{2}\)

\(B'C=\sqrt{B'B^2+BC^2}=a\sqrt{2}\)

\(B'D'=BD=2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)

Áp dụng định lý hàm cos:

\(cos\widehat{B'CD'}=\dfrac{B'C^2+D'C^2-B'D'^2}{2B'C.D'C}=\dfrac{1}{4}\)

\(\Rightarrow\left(A'B,B'C\right)\approx75^031'\)

NV
23 tháng 9 2024

loading...

NV
20 tháng 12 2022

4.

Đáp án A đúng

\(y'=9x^2+3>0;\forall v\in R\)

6.

Đáp án  B đúng

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)

25 tháng 5 2016

chữ nhỏ quá mk ko thấy  j cả

25 tháng 5 2016

bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với

14 tháng 9

Mình nhìn rõ biểu thức trong ảnh là:


$$

V = \sqrt[3]{\,(x^2 - 4)^2\,}.

$$


---


### Phân tích:


* Đây là căn bậc 3 của $(x^2 - 4)^2$.

* Vì căn bậc 3 **luôn xác định với mọi số thực**, nên biểu thức có **tập xác định** là $\mathbb{R}$ (tất cả số thực).


---


### Biến đổi đơn giản hơn:


$$

V = \sqrt[3]{(x^2 - 4)^2} = \big|x^2 - 4\big|^{\tfrac{2}{3}}.

$$


---


✅ Kết luận:


* Tập xác định: $D = \mathbb{R}$.

* Dạng đơn giản: $V = |x^2 - 4|^{2/3}$.





21 giờ trước (21:44)

ĐKXĐ: \(2x-x^2\ge0\)

=>\(x^2-2x\le0\)

=>x(x-2)<=0

=>0<=x<=2

0<=x<=2 nên 0>=-x>=-2

=>0>=-x+1>=-2+1

=>0>=-x+1>=-1

\(y=\sqrt{2x-x^2}-x\)

=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)

Đặt y'<0

=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)

=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)

TH1: 1-x<0

=>x>1

=>1<x<=2

Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1

=>(1) luôn đúng với mọi x>1

Kết hợp ĐKXĐ, ta được: 1<x<=2(2)

TH2: 1-x>=0

=>x<=1

(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)

=>\(\left(1-x\right)^2<2x-x^2\)

=>\(x^2-2x+1-2x+x^2\le0\)

=>\(2x^2-4x+1\le0\)

=>\(x^2-2x+\frac12\le0\)

=>\(x^2-2x+1-\frac12\le0\)

=>\(\left(x-1\right)^2\le\frac12\)

=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)

=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

=>0,29<x<1,71(3)

Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)

=>Chọn C

20 tháng 7 2016

Mình thấy có phân biệt gì giữa hàm đa thức và phân thức đâu bạn.

Theo định nghĩa thì hàm đạt cực trị tại y'=0; đồng biến khi y' > 0 và nghịch biến khi y' < 0.

Cách làm bài hàm bậc 3 ở trên là chưa chính xác.

17 tháng 6 2021

Với hàm đa thức thì xét y’>=0 nhé bạn, có khác nhau đất

22 giờ trước (20:57)

ôi trời nhìn khó vậy

22 giờ trước (21:14)

jubyuibgi

CT
11 tháng 1 2023

Em muốn hỏi gì vậy?

1
21 giờ trước (21:43)

ĐKXĐ: \(2x-x^2\ge0\)

=>\(x^2-2x\le0\)

=>x(x-2)<=0

=>0<=x<=2

0<=x<=2 nên 0>=-x>=-2

=>0>=-x+1>=-2+1

=>0>=-x+1>=-1

\(y=\sqrt{2x-x^2}-x\)

=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)

Đặt y'<0

=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)

=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)

TH1: 1-x<0

=>x>1

=>1<x<=2

Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1

=>(1) luôn đúng với mọi x>1

Kết hợp ĐKXĐ, ta được: 1<x<=2(2)

TH2: 1-x>=0

=>x<=1

(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)

=>\(\left(1-x\right)^2<2x-x^2\)

=>\(x^2-2x+1-2x+x^2\le0\)

=>\(2x^2-4x+1\le0\)

=>\(x^2-2x+\frac12\le0\)

=>\(x^2-2x+1-\frac12\le0\)

=>\(\left(x-1\right)^2\le\frac12\)

=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)

=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

=>0,29<x<1,71(3)

Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)

=>Chọn C