
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



ĐKXĐ: \(2x-x^2\ge0\)
=>\(x^2-2x\le0\)
=>x(x-2)<=0
=>0<=x<=2
0<=x<=2 nên 0>=-x>=-2
=>0>=-x+1>=-2+1
=>0>=-x+1>=-1
\(y=\sqrt{2x-x^2}-x\)
=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)
Đặt y'<0
=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)
=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)
TH1: 1-x<0
=>x>1
=>1<x<=2
Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1
=>(1) luôn đúng với mọi x>1
Kết hợp ĐKXĐ, ta được: 1<x<=2(2)
TH2: 1-x>=0
=>x<=1
(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)
=>\(\left(1-x\right)^2<2x-x^2\)
=>\(x^2-2x+1-2x+x^2\le0\)
=>\(2x^2-4x+1\le0\)
=>\(x^2-2x+\frac12\le0\)
=>\(x^2-2x+1-\frac12\le0\)
=>\(\left(x-1\right)^2\le\frac12\)
=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)
=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
=>0,29<x<1,71(3)
Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)
=>Chọn C

ĐKXĐ: \(2x-x^2\ge0\)
=>\(x^2-2x\le0\)
=>x(x-2)<=0
=>0<=x<=2
0<=x<=2 nên 0>=-x>=-2
=>0>=-x+1>=-2+1
=>0>=-x+1>=-1
\(y=\sqrt{2x-x^2}-x\)
=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)
Đặt y'<0
=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)
=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)
TH1: 1-x<0
=>x>1
=>1<x<=2
Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1
=>(1) luôn đúng với mọi x>1
Kết hợp ĐKXĐ, ta được: 1<x<=2(2)
TH2: 1-x>=0
=>x<=1
(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)
=>\(\left(1-x\right)^2<2x-x^2\)
=>\(x^2-2x+1-2x+x^2\le0\)
=>\(2x^2-4x+1\le0\)
=>\(x^2-2x+\frac12\le0\)
=>\(x^2-2x+1-\frac12\le0\)
=>\(\left(x-1\right)^2\le\frac12\)
=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)
=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
=>0,29<x<1,71(3)
Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)
=>Chọn C



Mình nhìn rõ biểu thức trong ảnh là:
$$
V = \sqrt[3]{\,(x^2 - 4)^2\,}.
$$
---
### Phân tích:
* Đây là căn bậc 3 của $(x^2 - 4)^2$.
* Vì căn bậc 3 **luôn xác định với mọi số thực**, nên biểu thức có **tập xác định** là $\mathbb{R}$ (tất cả số thực).
---
### Biến đổi đơn giản hơn:
$$
V = \sqrt[3]{(x^2 - 4)^2} = \big|x^2 - 4\big|^{\tfrac{2}{3}}.
$$
---
✅ Kết luận:
* Tập xác định: $D = \mathbb{R}$.
* Dạng đơn giản: $V = |x^2 - 4|^{2/3}$.

Dựa vào đồ thị, ta thấy \(m=\min\limits_{\left[-1;3\right]}f\left(x\right)=f\left(2\right)=-4\)
và \(M=\max\limits_{\left[-1;3\right]}f\left(x\right)=f\left(-1\right)=2\)
Khi đó \(M+m=2-4=-2\)