Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi vận tốc dự định của ô tô là v (km/h)
ĐK: \(v>0\)
Vận tốc trên đoạn dường sau là: \(\dfrac{9}{8}v\left(km/h\right)\)
Thời gian đi trên đoạn đường đầu là: \(\dfrac{20}{v}\left(h\right)\)
Thời gian đi trên đoạn đường đầu là: \(\dfrac{110-20}{\dfrac{9}{8}v}=\dfrac{90}{\dfrac{9v}{8}}=\dfrac{720}{9v}=\dfrac{80}{v}\left(h\right)\)
Vì ô tô đến B sớm hơn dự định 15 phút (\(15ph=\dfrac{1}{4}h\)), nên ta có phương trình:
\(\dfrac{80}{v}-\dfrac{20}{v}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{60}{v}=\dfrac{1}{4}\)
\(\Leftrightarrow v=240\left(km/h\right)\)
Vậy ...
Gọi x là dộ dài quãng đường ab \(x\ge0\) ( km )
Thời gian nếu đi như dự định \(\frac{x}{40}\)
Thời gian đi lúc đầu \(\frac{\frac{1}{2}x-60}{40}=\frac{x-120}{80}\)
Vận tốc lúc sau 40 + 10 = 50
Thời gian đi lúc sau \(\frac{\frac{1}{2}x+60}{50}=\frac{x+120}{100}\)
Theo đề , ta có
\(\frac{x-120}{80}+\frac{x+120}{100}=\frac{x}{40}-1\)
\(\frac{5x-600}{400}+\frac{4x+480}{400}=\frac{10x}{400}-\frac{400}{400}\)
\(5x-600+4x+480=10x-400\)
\(9x-120=10x-400\)
\(400-120=10x-9x\)
\(x=280\)
Vậy quãng đường AB dài 280 km
Gọi x là quãng đường AB (km)
Thời gian dự đinh: x/48 (h)
1 giờ xe đi được : 48 * 1 = 48 (km)
=> quãng đường còn lại: x - 48 (km)
thời gian đến B khi xe bị hỏng: (x - 48) / 54 (h)
Thời gian đến B từ lúc bắt đầu đi đến khi xe bị hỏng:
(x - 48) / 54 + 1/4 + 1 (h)
Ta có phương trình: (x - 48) / 54 + 1/4 + 1 = x/48
=> x = 156
AB dài 156 km
Câu 1:
Gọi thời gian xe máy đi được trước khi gặp ô tô là \(x\) \(\left(h\right)\left(x>24\right)\)
Thời gian xe máy đi được trước khi gặp xe máy là \(x-24\) \(\left(h\right)\)
Quãng đường xe máy đi được là \(35x\) \(\left(km\right)\)
Quãng đường ô tô đi được là \(45\left(x-24\right)\) \(\left(km\right)\)
Ta có \(pt:35x+45\left(x-24\right)=90\)
\(\Leftrightarrow35x+45x-1080=90\\ \Leftrightarrow80x=1170\\ \Leftrightarrow x=14\dfrac{5}{8}\left(TMĐK\right)\)
Vậy thời gian xe máy đi được trước khi gặp ô tô là \(14\dfrac{5}{8}\) \(\left(h\right)\)
Khoảng cách giữa diểm gặp nhau và Hà Nội là \(35\cdot14\dfrac{5}{8}=511\dfrac{7}{8}\) \(\left(km\right)\)
Câu 2:
Gọi thời gian ô tô đi từ \(A-B\) là \(x\) \(\left(h\right)\left(0< x< 8,75\right)\)
Thời gian ô tô đi từ \(B-A\) là \(8,75-x\) \(\left(h\right)\)
Quãng đường ô tô đi được từ \(A-B\) là \(40x\) \(\left(km\right)\)
Quãng đường ô tô đi được từ \(B-A\) là \(30\left(8,75-x\right)\) \(\left(km\right)\)
Ta có \(pt:40x=30\left(8,75-x\right)\) \(\Leftrightarrow40x=262,5-30x\\ \Leftrightarrow70x=262,5\\ \Leftrightarrow x=3,75\left(TMĐK\right)\) Vậy thời gian ô tô đi từ \(A-B\) là \(3,75\) \(\left(h\right)\) Độ dài quãng đường \(AB\) là \(3,75\cdot40=150\) \(\left(km\right)\)Gọi vận tốc ô tô 1 là x (km/h) (x>0)
thời gian ôtô 1 đi từ A đến điểm 2 xe gặp nhau: 10h30 - 6h = 4,5(h)
vận tốc ô tô 2 là x+20 (km/h)
thời gian oto 2 đi từ A đến điểm gặp nhau: 10h30-7h30 = 3h
Theo bài ra ta có phương trình:
4,5x = (x+20)3
=> 4,5x = 3x + 60
=> 1,5x = 60
=> x= 40 (tmdk)
hay vận tốc oto 1 là 40 km/h
vận tốc oto 2 là 40+20=60km/h
bài 1
gọi thời gian đi từ A đến B là x(h;x>0)
nên vận tốc là 20x(km)
do thời gian lúc về nhiêu hơn lúc đi là 10'=\(\dfrac{1}{6}\) h
nên thời gian là x+\(\dfrac{1}{6}\left(h\right)\)
nên quãng đường là \(15\left(x+\dfrac{1}{6}\right)\) (km)
vì trên cùng 1 quãng đường nên ta có pt
\(20x=15\left(x+\dfrac{1}{6}\right)\)
⇔\(20x=15x+\dfrac{5}{2}\)
⇔20x-15x=\(\dfrac{5}{2}\)
⇔\(5x=\dfrac{5}{2}\)
⇔x=0,5(h)
Quãng đường AB là 20x=20.0,5=10(km)
vậy quãng đường AB là 10km
-Gọi t1 là thời gian của người đi xe đạp đi từ A đến B
-Gọi t2 là thời gian của người đi xe đạp đi từ B đến A
-do thời gian về hơn thời gian đi là 10 phút = \(\dfrac{1}{6}\)h
=> t2= t1 + \(\dfrac{1}{6}\)
-ta có: S1= v1 . t1 = 20t1
S2= v2 . t2 = 15.( t1 + \(\dfrac{1}{6}\))
-mà S1 = S2
=>20t1 = 15 ( t1 + \(\dfrac{1}{6}\))
<=>20t1=15t1 + 2,5
<=>20t1 - 15t1= 2,5
<=> 5t1 = 2,5
<=>t1=0,5
=> S1 = v1.t1=20 . 0,5=10
Vậy quãng đường AB dài 10km
MK cảm thấy đề bài 1 cứ sai sai nhưng mk làm thử nhé
Bài 1. Gọi vận tốc xe từ A là x ( x > 0 , đơn vị : km/h )
Sau 2 giờ xe từ B đi được quãng đường là : 2.10 = 20 ( km )
Sau 2 giờ xe từ A đi được quãng đường là : 2x ( km)
Do 2 xe đi ngược chiều nhau nên đến khi gặp nhau tổng quãng đường hai xe đi bằng quãng đường AB , ta có phương trình sau :
2x + 20 = 180
⇔ 2x = 160
⇔ x = 80 ( thỏa mãn )
Vậy,....
Bài 2. Gọi quãng đường AB là x ( x > 0 , đơn vị : km)
Quãng đường đã đi trong 24 phút ( \(\dfrac{2}{5}\) giờ ) là : \(\dfrac{2}{5}\).50 = 20 ( km)
Quãng đường còn lại cần đi là : x - 20 ( km )
Thời gian đi với vận tốc 50km/h là : \(\dfrac{x}{50}\) ( giờ )
Thời gian đi với vận tốc 40km/h là : \(\dfrac{x-20}{40}\) ( giờ )
Đổi : 18 phút = \(\dfrac{3}{10}\) ( giờ )
Theo đề bài , ta có phương trình :
\(\dfrac{x}{50}\) + \(\dfrac{3}{10}\) = \(\dfrac{x-20}{40}\) + \(\dfrac{2}{5}\)
⇔\(\dfrac{x}{50}\) - \(\dfrac{x-20}{40}\) = \(\dfrac{2}{5}\) - \(\dfrac{3}{10}\)
⇔ \(\dfrac{4x-5x+100}{200}=\dfrac{1}{10}\)
⇔ \(\dfrac{100-x}{200}=\dfrac{1}{10}\)
⇔1000 - 10x = 200
⇔ 10x = 800
⇔ x = 80 ( thỏa mãn )
Vậy,....
Gọi vận tốc dự định là x (km/h)
4h20 = \(\dfrac{13}{3}h\)
Thời gian đi thực tế là:
4h20' - 20' = 4h
Vận tốc thực tế là: x + 5 (km/h)
Theo đề ra ta có pt:
\(x.\dfrac{13}{3}=\left(x+5\right).4\)
\(\Leftrightarrow\dfrac{13x}{3}=\dfrac{\left(4x+20\right).3}{3}\)
\(\Leftrightarrow13x=12x+60\)
\(\Leftrightarrow x=60\)
Suy ra vận tốc dự định là 60 (km/h)
Quãng đường AB là: \(60.\dfrac{13}{3}=260\) km