K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7

\(c)\left(2x-3\right)^2-\left(x-1\right)=0\\ \Leftrightarrow\left(4x^2-12x+9\right)-\left(x-1\right)=0\\ \Leftrightarrow4x^2-12x+9-x+1=0\\ \Leftrightarrow4x^2-13x+10=0\\ \Leftrightarrow\left(4x^2-8x\right)-\left(5x-10\right)=0\\ \Leftrightarrow4x\left(x-2\right)-5\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(4x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{4}\end{matrix}\right.\)

\(d)\left(3x-2\right)\cdot\left(3x+2\right)-9\left(x-1\right)\cdot x=0\\ \Leftrightarrow\left(3x\right)^2-2^2-9\left(x-1\right)x=0\\ \Leftrightarrow9x^2-4-9x^2+9x=0\\ \Leftrightarrow9x-4=0\\ \Leftrightarrow9x=4\\ \Leftrightarrow x=\dfrac{4}{9}\)

Ta có : |x - 2| ; |x - 5| ; |x - 18| ≥0∀x∈R≥0∀x∈R

=> |x - 2| + |x - 5| + |x - 18|  ≥0∀x∈R≥0∀x∈R

=> D có giá trị nhỏ nhất khi x = 2;5;18

Mà x ko thể đồng thời nhận 3 giá trị

Nên GTNN của D là : 16 khi x = 5   ok nha bạn

x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4

Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)

Vậy GTNN của x^2/x-1 = 4 <=> x= 2

k mk nha

12 tháng 4 2021

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

12 tháng 4 2021

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c

28 tháng 7 2023

Yêu cầu đề bài của bạn

 

28 tháng 7 2023

A = - \(x^2\) - 4\(x\)

A = -(\(x^2\) + 4\(x\) + 4) + 4

A = -(\(x\) + 2)2 + 4 

Vì (\(x\) + 2)2 ≥ 0 ⇒ -(\(x\) + 2)2 ≤ 0 ⇒ - (\(x\) + 2)2 + 4  ≤ 4

⇒ Amax = 4 ⇔ \(x\) + 2 = 0 ⇔ \(x\) = -2

Kết luận giá trị lớn nhất của A là 4 xảy ra khi \(x\) = -2

B = - 9\(x^2\) + 24\(x\) - 18

B = - (9\(x^2\) - 24\(x\) + 16) - 2

B = -(3\(x\) - 4)2 - 2 

(3\(x\) - 4)2 ≥ 0 ⇒ -(3\(x\) - 4)2 ≤ 0 ⇒ -(3\(x\) - 4)2 - 2 ≤ -2 

Bmax = -2 ⇔ 3\(x\)   - 4 = 0 ⇔ \(x\) = \(\dfrac{4}{3}\) 

Kết luận giá trị lớn nhất của B là: -2 xảy ra khi \(x\) = \(\dfrac{4}{3}\) 

28 tháng 7 2023

\(A=-x^2-4x\)

\(\Rightarrow A=-x^2-4x-4+4\)

\(\Rightarrow A=-\left(x^2+4x+4\right)+4\)

\(\Rightarrow A=-\left(x+2\right)^2+4\)

mà \(-\left(x+2\right)^2\le0,\forall x\)

\(\Rightarrow A=-\left(x+2\right)^2+4\le0+4=4\)

Vậy GTLN của A là 4

\(B=-9x^2+24x-18\)

\(\Rightarrow B=-9x^2+24x-16+16-18\)

\(\Rightarrow B=-\left(9x^2-24x+16\right)+16-18\)

\(\Rightarrow B=-\left(3x-4\right)^2-2\)

mà \(-\left(3x-4\right)^2\le0,\forall x\)

\(\Rightarrow B=-\left(3x-4\right)^2-2\le0-2=-2\)

Vậy GTLN của B là -2

28 tháng 7 2023

loading...  

11 tháng 3 2022

15 tháng 2 2022

a, ĐKXĐ:\(2x^3-2x^2\ne0\Rightarrow2x^2\left(x-1\right)\ne0\Rightarrow\left\{{}\begin{matrix}2x^2\ne0\\x-1\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

b, \(A=\dfrac{5x^2-5x}{2x^3-2x^2}\)

\(\Rightarrow A=\dfrac{5x\left(x-1\right)}{2x^2\left(x-1\right)}\)

\(\Rightarrow A=\dfrac{5}{2x}\)

Để A=1\(\Rightarrow\dfrac{5}{2x}=1\)

\(\Rightarrow2x=5\\ \Rightarrow x=\dfrac{5}{2}\)

15 tháng 2 2022

a, đk \(2x^2\left(x-1\right)\ne0\Leftrightarrow x\ne0;x\ne1\)

b, \(A=\dfrac{5x\left(x-1\right)}{2x^2\left(x-1\right)}=\dfrac{5}{2x}=1\Rightarrow5=2x\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)

14 tháng 12 2022

a)

\(\left|x\right|=2=>\left[{}\begin{matrix}x=2\\x=-2\left(loaividieukien\right)\end{matrix}\right.\)

thay x=2 vào biểu thức B ta có

\(\dfrac{2\cdot2+2}{2+2}=\dfrac{6}{4}=1,5\)

b)

\(\dfrac{x+1}{2x-2}+\dfrac{1}{2-2x^2}\\ =\dfrac{x+1}{2x-2}-\dfrac{1}{2x^2-2}\\ =\dfrac{x+1}{2\left(x-1\right)}-\dfrac{1}{2\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}-\dfrac{1}{2\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^2+2x+1-1}{2\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^2+2x}{2\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x\left(x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)

17 tháng 11 2023

\(\dfrac{4x+2}{4x-2}+\dfrac{3-6x}{6x-6}\left(dkxd:x\ne\dfrac{1}{2};x\ne1\right)\)

\(=\dfrac{2\left(2x+1\right)}{2\left(2x-1\right)}+\dfrac{3\left(1-2x\right)}{6\left(x-1\right)}\)

\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2\left(x-1\right)}\)

\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2x-2}\)

\(=\dfrac{\left(2x+1\right)\left(2x-2\right)}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{\left(1-2x\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{4x^2-2x-2}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{4x^2-2x-2-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{2x-3}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{2x-3}{4x^2-6x+2}\)