K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 8 2024

Nếu \(f\left(x\right)=0\) có nghiệm trên \(\left[-1;1\right]\Rightarrow\min\limits_{\left[-1;1\right]}\left[f\left(x\right)\right]^2=0\) ko thỏa mãn yêu cầu

\(\Rightarrow f\left(x\right)=0\) vô nghiệm trên \(\left[-1;1\right]\)

Khi đó

\(f'\left(x\right)=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow f'\left(x\right)\le0;\forall x\in\left[-1;1\right]\)

Xét hàm \(y=\left[f\left(x\right)\right]^2\) trên \(\left[-1;1\right]\)

\(y=\left[f\left(x\right)\right]^2\Rightarrow y'=2f'\left(x\right).f\left(x\right)\) 

Do \(f'\left(x\right)\le0\) và \(f\left(x\right)=0\) vô nghiệm (nên ko đổi dấu) trên \(\left[-1;1\right]\) nên:

TH1: \(f\left(x\right)>0;\forall x\in\left[-1;1\right]\Rightarrow x^3-3x+1>-m\)

\(\Rightarrow-m< \min\limits_{\left[-1;1\right]}\left(x^3-3x+1\right)=-1\)

\(\Rightarrow m>1\)

Khi đó \(f'\left(x\right).f\left(x\right)\le0\Rightarrow y=\left[f\left(x\right)\right]^2\) nghịch biến trên \(\left[-1;1\right]\)

\(\Rightarrow y_{min}=y\left(1\right)=\left(1-3+m+1\right)^2=\left(m-1\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}m=0< 1\left(loại\right)\\m=2\end{matrix}\right.\)

TH2: \(f\left(x\right)< 0;\forall x\in\left[-1;1\right]\Rightarrow x^3-3x+1< -m\)

\(\Rightarrow-m>\max\limits_{\left[-1;1\right]}\left(x^3-3x+1\right)=3\)

\(\Rightarrow m< -3\)

Khi đó \(f'\left(x\right).f\left(x\right)\ge0\Rightarrow y=\left[f\left(x\right)\right]^2\) đồng biến trên \(\left[-1;1\right]\)

\(\Rightarrow y_{min}=y\left(-1\right)=\left(-1+3+m+1\right)^2=\left(m+3\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}m=-2>-3\left(loại\right)\\m=-4\end{matrix}\right.\)

Vậy \(m=2;m=-4\) (C đúng)

27 tháng 8 2024

=5145484985742651291274572147214912742724765142721567

NV
20 tháng 12 2022

4.

Đáp án A đúng

\(y'=9x^2+3>0;\forall v\in R\)

6.

Đáp án  B đúng

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)

14 tháng 9

Mình nhìn rõ biểu thức trong ảnh là:


$$

V = \sqrt[3]{\,(x^2 - 4)^2\,}.

$$


---


### Phân tích:


* Đây là căn bậc 3 của $(x^2 - 4)^2$.

* Vì căn bậc 3 **luôn xác định với mọi số thực**, nên biểu thức có **tập xác định** là $\mathbb{R}$ (tất cả số thực).


---


### Biến đổi đơn giản hơn:


$$

V = \sqrt[3]{(x^2 - 4)^2} = \big|x^2 - 4\big|^{\tfrac{2}{3}}.

$$


---


✅ Kết luận:


* Tập xác định: $D = \mathbb{R}$.

* Dạng đơn giản: $V = |x^2 - 4|^{2/3}$.





CT
11 tháng 1 2023

Em muốn hỏi gì vậy?

ĐKXĐ: \(2x-x^2\ge0\)

=>\(x^2-2x\le0\)

=>x(x-2)<=0

=>0<=x<=2

0<=x<=2 nên 0>=-x>=-2

=>0>=-x+1>=-2+1

=>0>=-x+1>=-1

\(y=\sqrt{2x-x^2}-x\)

=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)

Đặt y'<0

=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)

=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)

TH1: 1-x<0

=>x>1

=>1<x<=2

Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1

=>(1) luôn đúng với mọi x>1

Kết hợp ĐKXĐ, ta được: 1<x<=2(2)

TH2: 1-x>=0

=>x<=1

(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)

=>\(\left(1-x\right)^2<2x-x^2\)

=>\(x^2-2x+1-2x+x^2\le0\)

=>\(2x^2-4x+1\le0\)

=>\(x^2-2x+\frac12\le0\)

=>\(x^2-2x+1-\frac12\le0\)

=>\(\left(x-1\right)^2\le\frac12\)

=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)

=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

=>0,29<x<1,71(3)

Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)

=>Chọn C

17 tháng 9

ôi trời nhìn khó vậy

jubyuibgi

ĐKXĐ: \(2x-x^2\ge0\)

=>\(x^2-2x\le0\)

=>x(x-2)<=0

=>0<=x<=2

0<=x<=2 nên 0>=-x>=-2

=>0>=-x+1>=-2+1

=>0>=-x+1>=-1

\(y=\sqrt{2x-x^2}-x\)

=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)

Đặt y'<0

=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)

=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)

TH1: 1-x<0

=>x>1

=>1<x<=2

Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1

=>(1) luôn đúng với mọi x>1

Kết hợp ĐKXĐ, ta được: 1<x<=2(2)

TH2: 1-x>=0

=>x<=1

(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)

=>\(\left(1-x\right)^2<2x-x^2\)

=>\(x^2-2x+1-2x+x^2\le0\)

=>\(2x^2-4x+1\le0\)

=>\(x^2-2x+\frac12\le0\)

=>\(x^2-2x+1-\frac12\le0\)

=>\(\left(x-1\right)^2\le\frac12\)

=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)

=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

=>0,29<x<1,71(3)

Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)

=>Chọn C