Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n - 2 ⋮ n + 1
=> n + 1 - 3 ⋮ n + 1
=> 3 ⋮ n + 1
=> n + 1 thuộc Ư(3)
=> n + 1 thuộc {-1; 1; -3; 3}
=> n thuộc {-2; 0; -4; 2}
b, 2n - 3 ⋮ n - 1
=> 2n - 2 - 1 ⋮ n - 1
=> 2(n - 1) - 1 ⋮ n - 1
=> 1 ⋮ n - 1
=> n - 1 thuộc {-1; 1}
=> n thuộc {0; 2}
c, 3n + 5 ⋮ 2n - 1
=> 6n + 10 ⋮ 2n - 1
=> 6n - 3 + 13 ⋮ 2n - 1
=> 3(2n - 1) + 13 ⋮ 2n - 1
=> 13 ⋮ 2n - 1
=> 2n - 1 thuộc Ư(13)
=> 2n - 1 thuộc {-1; 1; -13; 13}
=> 2n thuộc {0; 2; -12; 14}
=> n thuộc {0; 1; -6; 7}
với dạng bài này ta phải tách số bị chia thành tổng hoặc hiệu 2 số trong đó có một số chia hết cho số chia
câu a) 2n +5 = 2n -1 +6
vì 2n -1 chia hết cho 2n -1 nên để 2n +5 chia hết cho 2n -1 khi 6 chia hết cho 2n -1
suy ra 2n -1 là ước của 6
vì 2n -1 là số lẻ nên 2n -1 \(\in\) {1;3}
n=1; 2
a) n + 1 chia hết cho n - 3
=> n - 3+ 4 chia hết cho n - 3
=> 4 chia hết cho n-3
=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
thế n-3 vô từng trường hợp các ước của 4 rồi tim x
b) 2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2(n+1) + 3 chia hết cho n +1
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3) = {1;-1;3;-3}
tìm x giống bài a
c) 10n chia hết cho 5n - 3
=> 10n - 6 + 6 chia hết cho 5n - 3
=> 2.(5n - 3) + 6 chia hết cho 5n - 3
=> 6 chia hết cho 5n - 3
=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}
tìm x giống bài a
a. n+1=(n-3)+4
(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)
Ta có (n-3) chia hết cho (n-3)
Suy ra 4 phải chia hết cho (n-3)
Vậy n= -1 ,1 , 2 , 4
b. 2n+5=2n+2+3=2(n+1)+3
tương tự câu a ta có 2(n+1) chia hết cho (n+1)
Suy ra 3 phải chia hết cho (n+1)
Vậy n=-2,0,2
c.10n=10n-6+6=2(5n-3) +6
Tiếp tục àm tương tự như câu a và b
Bài 4:
$A+2=1+2+2^2+2^3+...+2^{11}$
$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+...+2^{10})\vdots 3$
Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$
Bài 5:
$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ
$\Rightarrow n(n+1)$ chẵn
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh)
4n + 3 chia hết cho 2n + 1
4n + 2 + 1 chia hết cho 2n + 1
2.(2n + 1) + 1 chia hết cho 2n + 1
=> 1 chia hết cho 2n + 1
=> 2n + 1 thuộc Ư(1) = {1 ; -1}
Ta có bảng sau :
2n + 1 | 1 | -1 |
n | 0 | -2 |
b) \(n+7⋮n\)
Mà: \(n⋮n\)
\(\Rightarrow7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=1;7;-1;-7\)
Vậy giá trị n cần tìm là: n=1;-1;7;-7
\(n+11⋮n+9\)
\(\Rightarrow\left(n+9\right)+2⋮n+9\)
Do: \(n+9⋮n+9\)
\(\Rightarrow2⋮n+9\)
\(\Rightarrow n+9\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
Lập bảng giá trị:
n+9 | 1 | 2 | -1 | -2 |
n | -8 | -7 | -10 | -11 |
Vậy giá trị n cần tìm là: n=-8;-7;-10;-11
\(2n+13⋮n+3\)
\(\Rightarrow2\left(n+3\right)+7⋮n+3\)
Vì: \(2\left(n+3\right)⋮n+3\)
\(\Rightarrow7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Lập bảng giá trị:
n+3 | 1 | 7 | -1 | -7 |
n | -2 | 4 | -4 | -10 |
Vậy giá trị n cần tìm là: n=-2;4;-4;-10
mình đang gấp mình giải 1 phần phần kia tương tự nha dễ lắm
ta có 2n+3 \(⋮\)n-1
=> (2n-2)+5\(⋮\)n-1 ( vì 2n +3 =(2n-2)+5)
=> 2(n-1)+5\(⋮\)n-1
mà 2(n-1)\(⋮\)n-1
để (2n-2)+5 \(⋮\)n-1
thì 5 chia hết cho n-1
=> n-1 thuộc ước của 5 là 1;-1;5;-5
th1 n-1=1
n=1+1
n=2
....
vay ...
a: Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
hem bk làm