K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Chọn mp(SAC) có chứa SC

\(I\in SA\subset\left(SAC\right);I\in\left(BIK\right)\)

Do đó: \(I\in\left(SAC\right)\cap\left(BIK\right)\)

Trong mp(ABCD), gọi H là giao điểm của AC và BK

=>\(H\in\left(SAC\right)\cap\left(BIK\right)\)

=>\(\left(SAC\right)\cap\left(BIK\right)=HI\)

Gọi M là giao điểm của HI với SC

=>M là giao điểm của SC với mp(BIK)

Đặt A'B'=a

ΔA'B'C' vuông tại B'

=>\(\left(A^{\prime}B^{\prime}\right)^2+\left(B^{\prime}C^{\prime}\right)^2=\left(A^{\prime}C^{\prime}\right)^2\)

=>\(\left(A^{\prime}C^{\prime}\right)^2=a^2+a^2=2a^2\)

=>\(A^{\prime}C^{\prime}=a\sqrt2\) (1)

Vì ABCD.A'B'C'D' là hình lập phương

nên A'A//C'C và A'A=C'C

=>A'ACC' là hình bình hành

=>A'C'//AC

=>\(\hat{AC;A^{\prime}D}=\hat{A^{\prime}C^{\prime};A^{\prime}D}=\hat{DA^{\prime}C^{\prime}}\)

A'B'C'D' là hình vuông

=>A'D'=D'C'=C'B'=A'B'=a

Vì ABCD.A'B'C'D' là hình lập phương

nên A'B'BA là hình vuông

=>A'A=A'B'=a

Vì ABCD.A'B'C'D' là hình lập phương

nên D'D=A'A=a

ΔA'D'D vuông tại D'

=>\(\left(D^{\prime}A^{\prime}\right)^2+\left(D^{\prime}D\right)^2=\left(A^{\prime}D\right)^2\)

=>\(\left(A^{\prime}D\right)^2=a^2+a^2=2a^2\)

=>\(A^{\prime}D=a\sqrt2\)

D'C'CD là hình vuông

=>\(\left(DC^{\prime}\right)^2=\left(D^{\prime}D\right)^2+\left(D^{\prime}C^{\prime}\right)^2=a^2+a^2=2a^2\)

=>\(DC^{\prime}=a\sqrt2\)

=>DC'=DA'=A'C'

=>ΔDA'C' đều

=>\(\hat{DA^{\prime}C^{\prime}}=60^0\)

=>\(\hat{AC;A^{\prime}D}=60^0\)

=>Chọn C

Câu 1: \(\frac{\pi}{2}<\alpha,\beta<\pi\)

=>\(\sin\alpha>0;\sin\beta>0;cos\alpha<0;cos\beta<0\)

\(\sin^2\alpha+cos^2\alpha=1\)

=>\(cos^2\alpha=1-\sin^2\alpha=1-\left(\frac13\right)^2=\frac89\)

\(cos\alpha<0\)

nên \(cos\alpha=-\frac{2\sqrt2}{3}\)

Ta có: \(\sin^2\beta+cos^2\beta=1\)

=>\(\sin^2\beta=1-\left(-\frac23\right)^2=1-\frac49=\frac59\)

\(\sin\beta>0\)

nên \(\sin\beta=\frac{\sqrt5}{3}\)

\(\sin\left(\alpha+\beta\right)=\sin\alpha\cdot cos\beta+cos\alpha\cdot\sin\beta\)

\(=\frac13\cdot\frac{-2}{3}+\frac{-2\sqrt2}{3}\cdot\frac{\sqrt5}{3}=\frac{-\sqrt2-2\sqrt{10}}{9}\)

Câu 2:

\(P=cos\left(a+b\right)\cdot cos\left(a-b\right)\)

\(=\frac12\cdot\left\lbrack cos\left(a+b+a-b\right)+cos\left(a+b-a+b\right)\right\rbrack=\frac12\cdot\left\lbrack cos2a+cos2b\right\rbrack\)

\(=\frac12\cdot\left\lbrack2\cdot cos^2a-1+2\cdot cos^2b-1\right\rbrack=cos^2a+cos^2b-1\)

\(=\left(\frac13\right)^2+\left(\frac14\right)^2-1=\frac19+\frac{1}{16}-1=\frac{25}{144}-1=-\frac{119}{144}\)



14 tháng 9

ko


14 tháng 9

2315

bạn hãy ghi rõ câu hỏi ạ

Em chưa học ạ

 

9 tháng 1 2024

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:

p=O'A'OA=22=1�=�'�'��=22=1;

q=O'B'OB=13�=�'�'��=13;

r=O'C'OC=46=23�=�'�'��=46=23.

NV
19 tháng 4 2022

Gọi H là trung điểm AB, có lẽ từ 2 câu trên ta đã phải chứng minh được \(SH\perp\left(ABCD\right)\)

Do \(\left\{{}\begin{matrix}DM\cap\left(SAC\right)=S\\MS=\dfrac{1}{2}DS\end{matrix}\right.\) \(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)\)

Gọi E là giao điểm AC và DH

Talet: \(\dfrac{HE}{DE}=\dfrac{AH}{DC}=\dfrac{1}{2}\Rightarrow HE=\dfrac{1}{2}DE\)

\(\left\{{}\begin{matrix}DH\cap\left(SAC\right)=E\\HE=\dfrac{1}{2}DE\end{matrix}\right.\) \(\Rightarrow D\left(H;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)=d\left(M;\left(SAC\right)\right)\)

Từ H kẻ HF vuông góc AC (F thuộc AC), từ H kẻ \(HK\perp SF\)

\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H;\left(SAC\right)\right)\)

ABCD là hình vuông \(\Rightarrow\widehat{HAF}=45^0\Rightarrow HF=AH.sin45^0=\dfrac{a\sqrt{2}}{4}\)

\(SH=\dfrac{a\sqrt{3}}{2}\), hệ thức lượng:

\(HK=\dfrac{SH.HF}{\sqrt{SH^2+HF^2}}=\dfrac{a\sqrt{21}}{14}\)

\(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{a\sqrt{21}}{14}\)

NV
19 tháng 4 2022

undefined

NV
30 tháng 7 2021

a.

\(sin\left(2x-\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow2x-\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\dfrac{\pi}{8}+k\pi\) (1)

\(-\dfrac{\pi}{3}\le x\le\dfrac{7\pi}{3}\Rightarrow-\dfrac{\pi}{3}\le-\dfrac{\pi}{8}+k\pi\le\dfrac{7\pi}{3}\)

\(\Rightarrow-\dfrac{5}{24}\le k\le\dfrac{59}{24}\Rightarrow k=\left\{0;1;2\right\}\)

Thế vào (1) \(\Rightarrow x=\left\{-\dfrac{\pi}{8};\dfrac{7\pi}{8};\dfrac{15\pi}{8}\right\}\)

30 tháng 7 2021

Câu b lm ntn ạ 

NV
10 tháng 10 2019

ĐKXĐ: \(-2\le x\le3\)

Đặt \(\sqrt{x+2}+2\sqrt{3-x}=a\Rightarrow4\sqrt{6+x-x^2}-3x=a^2-14\)

Mặt khác \(a^2=\left(\sqrt{x+2}+2\sqrt{3-x}\right)^2\le5\left(x+2+3-x\right)=25\)

\(\Rightarrow a\le5\)

\(\sqrt{x+2}+\sqrt{3-x}+\sqrt{3-x}\ge\sqrt{5}+\sqrt{3-x}\ge\sqrt{5}\) \(\Rightarrow a\ge\sqrt{5}\)

\(\Rightarrow\sqrt{5}\le a\le5\)

Phương trình trở thành:

\(a^2-14=ma\Leftrightarrow\frac{a^2-14}{a}=m\) với \(a\in\left[\sqrt{5};5\right]\)

\(f\left(a\right)=\frac{a^2-14}{a}\Rightarrow f'\left(a\right)=\frac{2a^2-a^2+14}{a^2}=\frac{a^2+14}{a^2}>0\)

\(\Rightarrow f\left(a\right)\) đồng biến \(\Rightarrow f\left(\sqrt{5}\right)\le f\left(a\right)\le5\)

\(\Rightarrow-\frac{9\sqrt{5}}{5}\le f\left(a\right)\le\frac{11}{5}\Rightarrow-\frac{9\sqrt{5}}{5}\le m\le\frac{11}{5}\)