Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
a) \(\frac{2}{5}:\left(2x+\frac{3}{4}\right)=-\frac{7}{10}\)
=> \(2x+\frac{3}{4}=-\frac{7}{10}:\frac{2}{5}\)
=> \(2x+\frac{3}{4}=-\frac{7}{4}\)
=> \(2x=\frac{-7}{4}-\frac{3}{4}\)
=> \(2x=-\frac{5}{2}\)
=> \(x=\frac{-5}{2}:2\)
=> \(x=\frac{-5}{4}\)
b) \(\frac{x+1}{3}=\frac{2-x}{2}\)
\(\Rightarrow2\left(x+1\right)=3\left(2-x\right)\)
\(\Rightarrow2x+2=6-3x\)
\(\Rightarrow2x-3x=6-2\)
\(\Rightarrow-x=4\)
\(\Rightarrow x=4\)
c) \(\left|x-\frac{3}{5}\right|.\frac{1}{2}-\frac{1}{5}=0\)
\(\Rightarrow\left|x-\frac{3}{5}\right|.\frac{1}{2}=\frac{1}{5}\)
\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{1}{5}:\frac{1}{2}\)
\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}=\frac{2}{5}\\x-\frac{3}{5}=-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}+\frac{2}{5}\\x=\frac{3}{5}+-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
d) \(x^2-4x=0\)
Ta có : \(x^2-4x=0\)
\(\Rightarrow xx-4x=0\)
\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=0+4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
1,\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\frac{41}{6}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{41}{14}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{137}{42}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{137}{42}-\frac{1}{2}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{58}{21}\)
\(\left(x-\frac{9}{4}\right)=\frac{5}{2}:\frac{2}{9}\)
\(\left(x-\frac{9}{4}\right)=\frac{45}{4}\)
\(x=\frac{45}{4}+\frac{9}{4}\)
\(x=\frac{27}{2}\)
a) \(\frac{9}{20}\) c) \(\frac{-55}{4}\)
b) \(\frac{116}{75}\) d) \(\frac{-76}{45}\)
đúng hết đấy nhé mình tính kĩ lắm ko sai đâu
chúc may mắn
a) Xem lại đề
b) \(\Leftrightarrow3x^4-2x^2-1=0\Leftrightarrow\left(3x^2+1\right)\left(x^2-1\right)=0\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)