K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

\(1+\dfrac{1}{x+2}=\dfrac{12}{x^3+8}\Leftrightarrow\dfrac{\left(x^3+8\right)\left(x+2\right)}{\left(x^3+8\right)\left(x+2\right)}+\dfrac{\left(x^3+8\right)}{\left(x^3+8\right)\left(x+2\right)}=\dfrac{12\left(x+2\right)}{\left(x^3+8\right)\left(x+2\right)}\)

\(\Rightarrow x^4+2x^3+8x+16+x^3+8=12x+24\)

\(\Leftrightarrow x^4+3x^3-4x=0\\ \Leftrightarrow x\left(x^3+3x^2-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x^3+3x^2-4=0\end{matrix}\right.\)

\(x^3+3x^2-4=0\Leftrightarrow\left(x^3+4x^2+4x\right)-\left(x^2+4x+4 \right)=0\)

\(\left(x-1\right)\left(x^2+4x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\left(loại\right)\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={1}

Câu 22 Giá trị của x thoả mãn 2x(x – 3) + 5(x – 3) = 0 là A. 0B.- \(\dfrac{5}{2}\)C. 3 hoặc -\(\dfrac{5}{2}\)câu 23 Giá trị của x thoả mãn (10x + 9).x – (5x – 1)(2x + 3) = 8 là:A. 1,5B. 1,25C. –1,25D. 3Câu 24 Giá trị của x thỏa mãn 2x( x + 3 ) + 2( x + 3 ) = 0 là?A. x = -3 hoặc x =1B. x =3 hoặc x = -1C. x = -3 hoặc x = -1 5D. x =1 hoặc x = 3 Câu25 Giá trị của x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15 là :A. –1,5B. –2,5C. –3,5D. –4,5Câu 26 Giá trị của...
Đọc tiếp

Câu 22 Giá trị của x thoả mãn 2x(x – 3) + 5(x – 3) = 0 là 

A. 0

B.- \(\dfrac{5}{2}\)

C. 3 hoặc -\(\dfrac{5}{2}\)

câu 23 Giá trị của x thoả mãn (10x + 9).x – (5x – 1)(2x + 3) = 8 là:

A. 1,5

B. 1,25

C. –1,25

D. 3

Câu 24 Giá trị của x thỏa mãn 2x( x + 3 ) + 2( x + 3 ) = 0 là?

A. x = -3 hoặc x =1

B. x =3 hoặc x = -1

C. x = -3 hoặc x = -1 5

D. x =1 hoặc x = 3 Câu

25 Giá trị của x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15 là :

A. –1,5

B. –2,5

C. –3,5

D. –4,5

Câu 26 Giá trị của x thoả mãn (x + 3)3 – x(3x+1)2 + (2x + 1)(4x2 – 2x + 1) = 28 là: A. 0

B. -8 \(\dfrac{2}{3}\)

C. 0 hoặc 8\(\dfrac{2}{3}\)

D. 0 hoặc -8\(\dfrac{2}{3}\) 

 Câu 28 Tứ giác ABCD có 𝐴̂ = 1200 ; 𝐵̂ = 800 ; 𝐶̂ = 1000 thì:

A. 𝐷̂ = 600

B. 𝐷̂ = 900

C. 𝐷̂ = 400

D. 𝐷̂ = 1000

Câu 29 Cho ΔABC có I, K lần lượt là trung điểm của AB và AC Biết BC = 20cm. Tacó:

A. IK = 40 cm.

B. IK = 10 cm.

C. IK=5 cm.

D. IK= 15 cm.

3
1 tháng 11 2021

\(22,C\\ 23,C\\ 24,Sai.hết\\ 25,C\\ 28,A\\ 29,B\)

1 tháng 11 2021

22c; 23c; 24c; 25c, 29B

17 tháng 11 2023

a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)

b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)

\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)

\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)

\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)

c: \(x^3-x^2+2=0\)

=>\(x^3+x^2-2x^2+2=0\)

=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)

=>x+1=0

=>x=-1

Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)

19 tháng 12 2020

Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:

\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).

Không mất tính tổng quát, giả sử x + y = 0

\(\Leftrightarrow x=-y\)

\(\Leftrightarrow x^3=-y^3\).

Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).

Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).

 

 

NV
9 tháng 4 2021

\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)

\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)

\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)

8 tháng 12 2021

a) A =  \(\dfrac{1}{x-1}-\dfrac{4}{x+1}+\dfrac{8x}{\left(x-1\right)\left(x+1\right)}\) 

\(\dfrac{x+1-4x+4+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{5}{x-1}\) => đpcm

b) \(\left|x-2\right|=3=>\left[{}\begin{matrix}x-2=3< =>x=5\left(C\right)\\x-2=-3< =>x=-1\left(L\right)\end{matrix}\right.\)

Thay x = 5 vào A, ta có:

A = \(\dfrac{5}{5-1}=\dfrac{5}{4}\)

c) Để A nguyên <=> \(5⋮x-1\)

x-1-5-115
x-4(C)0(C)2(C)6(C)

 

15 tháng 3 2023

`a/(x+1)+b/(x-2)=(a(x-2)+b(x+1))/((x+1)(x-2))`

`=(ax-2a+bx+b)/(x^2-x-2)`

`=((a+b)x+(-2a+b))/(x^2-x-2)`

``

Theo đề bài: `((a+b)x+(-2a+b))/(x^2-x-2)=(32x-19)/(x^2-x-2)`

Đồng nhất hệ số ta được: `{(a+b=32),(-2a+b=-19):}` 

`<=>{(a+b=32),(2a-b=19):}`

`<=>{(3a=51),(a+b=32):}`

`<=>{(a=17),(17+b=32):}`

`<=>{(a=17),(b=15):}`