Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với x>0 thì pt luôn xác định.
\(\Rightarrow\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}=\dfrac{12}{x^3+8}\)
\(\Leftrightarrow x^3+8+x^2-2x+4=12\)
\(\Leftrightarrow x^3+x^2-2x=0\)
\(x\left(x^2+x-2\right)=0\Rightarrow x=0\) hoặc \(x^2+x-2=0\)
x=0 hoac (x\(^2\)-1) +(x-1) =0
x=0 hoặc (x-1)(x+2)=0
x=0 hoax x=1 hoặc x=2 vỉ x>0 nên pt có 2 nghiệm là x=1 , x=2.
b.\(x^3-16x^2+64x=0\)
=>\(x^3-8x^2-8x^2+64x=0\)
=>\(x^2\left(x-8\right)-8x\left(x-8\right)=0\)
=>\(x\left(x-8\right)\left(x-8\right)=0\)
=>\(x=0\) và \(x-8=0\)
=>x=0 và x= 8
Vậy S={0; 8}
\(|6x-1|=2x+5\)
-Nếu 6x - 1 \(\ge0\Leftrightarrow x\ge\dfrac{1}{6}\)
\(|6x-1|=2x+5\)
\(\Leftrightarrow6x-1=2x+5\)
\(\Leftrightarrow6x-2x=5+1\)
\(\Leftrightarrow4x=6\)
\(\Leftrightarrow x=\dfrac{3}{2}\) (Loại)
-Nếu 6x-1 < 0 \(\Leftrightarrow x< \dfrac{1}{6}\)
\(|6x-1|=2x+5\)
\(\Leftrightarrow-6x+1=2x+5\)
\(\Leftrightarrow-6x-2x=5-1\)
\(\Leftrightarrow-8x=4\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)(Nhận)
Vậy S={\(-\dfrac{1}{2}\)}
Câu trả lời sai là:
(C) Giá trị của Q tại \(x=3\) là \(\dfrac{3-3}{3+3}=0\)
Do ĐKXĐ của phương trình
\(Q=\dfrac{x^2-6x+9}{x^2-9}\) là \(x\ne\pm3\)
a) ĐKXĐ: x khác 0
\(x+\dfrac{5}{x}>0\)
\(\Leftrightarrow x^2+5>0\) ( luôn đúng)
Vậy bất pt vô số nghiệm ( loại x = 0)
d)
\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)
\(\Leftrightarrow2x+2-4x+4>-15\)
\(\Leftrightarrow-2x>-21\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Vậy....................
a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)
Mà \(x^2+5>0\)
\(\Rightarrow x>0\)
d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)
\(\Leftrightarrow-x>-\dfrac{21}{2}\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
a) \(\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)
=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)
=>\(x^2+2x+1-x^2+2x-1=16\)
=>4x=16=>x=4
b)\(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)
=>\(\dfrac{12}{x^2-4}-\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\dfrac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\)
=>\(12-\left(x+1\right)\left(x+2\right)+\left(x+7\right)\left(x-2\right)=0\)
=>\(12-x^2-3x-2+x^2+5x-14=0\)
=>2x-4=0=>2x=4=>x=2
c)\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)
=>\(\dfrac{12}{8+x^3}=\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}\)
=>\(12=x^3+8+x^2-2x+4\)
=>\(x^3+x^2-2x=0\)
=>\(x^3-x+x^2-x=0\)
2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)
\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3
3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)
4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)
\(1+\dfrac{1}{x+2}=\dfrac{12}{x^3+8}\Leftrightarrow\dfrac{\left(x^3+8\right)\left(x+2\right)}{\left(x^3+8\right)\left(x+2\right)}+\dfrac{\left(x^3+8\right)}{\left(x^3+8\right)\left(x+2\right)}=\dfrac{12\left(x+2\right)}{\left(x^3+8\right)\left(x+2\right)}\)
\(\Rightarrow x^4+2x^3+8x+16+x^3+8=12x+24\)
\(\Leftrightarrow x^4+3x^3-4x=0\\ \Leftrightarrow x\left(x^3+3x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x^3+3x^2-4=0\end{matrix}\right.\)
\(x^3+3x^2-4=0\Leftrightarrow\left(x^3+4x^2+4x\right)-\left(x^2+4x+4 \right)=0\)
\(\left(x-1\right)\left(x^2+4x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\left(loại\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={1}