Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+2}{3x-6}=\frac{2x-6}{3x-15}=\frac{\left(2x+2\right)-\left(2x-6\right)}{\left(3x-6\right)-\left(3x-15\right)}=\frac{2x+2-2x+6}{3x-6-3x+15}=\frac{8}{9}\)
=> (2x + 2).9 = (3x - 6).8
=> 18x + 18 = 24x - 48
=> 18 + 48 = 24x - 18x
=> 6x = 66
=> x = 66 : 6 = 11
a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)
Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)
b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)
\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)
\(\Leftrightarrow-\left|x-2\right|=-1\)
\(\Rightarrow\left|x-2\right|=1\)
\(\Rightarrow x=1;3\)
Mà x lớn nhất => x = 3
\(P=\text{|}x+1\text{|}+\text{|}2x+3\text{|}+\text{|}3x+5\text{|}\ge0.\)( trị tuyệt đối luôn lớn hơn hoặc = 0 )
Mà \(P=16x-1\)
\(\Rightarrow16x-1\ge0\)
\(\Rightarrow x\ge\frac{1}{16}\) \(\Rightarrow x>0\)
phá trị tuyệt đối với x>0 ta được
\(x+1+2x+3+3x+5=16x-1\)
\(6x+9=16x-1\)
\(6x-16x=-1-9\)
\(-10x=-10\)
\(x=\frac{-10}{-10}=1\) ( tm x>0 )
5^(2x+1)=5^3
=> 2x+1=3
2x=3-1=2
x=1
tik nha Hiền xinh gái
\(A=3-x^2+2x=3-\left(x^2-2x\right)=3-\left(x^2-2x+1-1\right)\)
\(=3-\left[\left(x-1\right)^2-1\right]=3-\left(x-1\right)^2+1=4-\left(x-1\right)^2\le4\)
Dấu '=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)
Vậy MaxA=4 khi x=1