K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2015

|x - 2|+  |x - 3| = 4

Th1: x - 2 + x - 3 = 4

-5 = 4 (vô lí)

Th2: -(x - 2) + [-(x-3)] = 4

-x + 2 + (-x) + 3 =4

-2x + 5 = 4

-2x = -1

x = 1/2

Vậy x = 1/2

7 tháng 1 2016

\(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)

18 tháng 1 2017

Giao luu: Vi_et, tam giác đều

điều kiện có nghiệm m>=0

\(\orbr{\begin{cases}x_1+x_2=2\left(1\right)\\x_1x_2=1-m\left(2\right)\end{cases}}\)gọi a,b dễ viết \(P=!3a+b!+!3b+a!\)

\(P=!2a+2!+!2b+2!=2\left(!a+1!+!b+1!\right)\)

g/s b>=a => !b+1!=b+1 vì khi đó b>0

giờ lại phải xem a với -1 khi nào

f(-1)=4+m vậy với m=4 xẽ có nghiệm a=-1=> 

TH xét 0<m<=4 

\(P=2\left[\left(a+1\right)+b+1\right]=2.4=8\)

TH m>4

\(P=2\left[\left(b+1\right)-\left(a+1\right)\right]=2\left(b-a\right)\)có vẻ phức tạp tơn

(a+b)^2=4=> (b-a)^2=4-4ab=4-4(1-m)=m 

Vì b>=a=> \(b-a=2\sqrt{m}\)

\(P=4.\sqrt{m}\)

có vẻ mệt hơn cách thông thường

Mình làm BT

\(\left(x-1\right)^2=m\Rightarrow m\ge0\Rightarrow\orbr{\begin{cases}x_1=1-\sqrt{m}\\x_2=1+\sqrt{m}\end{cases}}\)\(P=2.\left[!\left(2-\sqrt{m}\right)!+!\left(2+\sqrt{m}\right)!\right]\)

Nếu \(2-\sqrt{m}\ge0\Rightarrow0\le m\le4\)\(\Rightarrow P=2\left(2+2\right)=8\)

nếu\(2-\sqrt{m}< 0\Rightarrow m>4\)               \(P=2\left(-2+\sqrt{m}+2+\sqrt{m}\right)=4\sqrt{m}\)

có lẽ mình áp dụng Vi_et chưa hay!

19 tháng 1 2017

Cách em áp dụng viet đúng ,phức tạp hơn đúng. Nó phát huy tác dụng với bài phức tạp hơn. Vdụ rẽ hiểu. Nhà bạn cách nhà 50m ? Đi bộ hay đi xe đạp ai đến trước.

21 tháng 8 2023

a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:

Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.

Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))

Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)

b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5

Vậy, khi x = 4/9, giá trị của A là 6/5.

c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3

Vì A là một số âm, ta có: -√x/(x - 1) = -1/3

Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0

Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2

Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.

NV
4 tháng 5 2019

\(\left|x^2-4x\right|+\left|x-2\right|\ge\left|x^2-4x+x-2\right|=\left|x^2-3x-2\right|\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x^2-4x\right)\left(x-2\right)\ge0\)

\(\Leftrightarrow x\left(x-4\right)\left(x-2\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}0\le x\le2\\x\ge4\end{matrix}\right.\)

Vậy nghiệm của pt đã cho là \(\left[{}\begin{matrix}0\le x\le2\\x\ge4\end{matrix}\right.\)