K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Chọn C

Lưu ý: Hàm số liên trục trên một Đoạn thì luôn có GTLN và GTNN trên đoạn đó Nên áp dụng bài toán tìm GTLN, GTNN của hàm số trên một đoạn, không lập BBT của hàm sô.

Hàm số y =  - x 2 + x - 6 x + 1 liên tục trên đoạn [0;3]

16 tháng 3 2018

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

NV
4 tháng 4 2021

\(g\left(x\right)=x^4-4x^3+4x^2+a\)

\(g'\left(x\right)=4x^3-12x^2+8x=0\Leftrightarrow4x\left(x^2-3x+2\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

\(f\left(0\right)=f\left(2\right)=\left|a\right|\) ; \(f\left(1\right)=\left|a+1\right|\)

TH1: \(\left\{{}\begin{matrix}M=\left|a\right|\\m=\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\ge\left|a+1\right|\\\left|a\right|\le2\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{2}{3}\le a\le-\dfrac{1}{2}\\a\le-2\end{matrix}\right.\) \(\Rightarrow a=\left\{-3;-2\right\}\)

TH2: \(\left\{{}\begin{matrix}M=\left|a+1\right|\\m=\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a+1\right|\ge\left|a\right|\\\left|a+1\right|\le2\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le a\le-\dfrac{1}{3}\\a\ge1\end{matrix}\right.\) \(\Rightarrow a=\left\{1;2;3\right\}\)

NV
6 tháng 9 2021

Đề là \(y=-x^3-3mx^2+6\) hay \(y=x^3-3mx^2+6\) nhỉ?

20 tháng 9 2019

Đáp án: A.

Ta có y(0) = -5, y(3) = -2, tọa độ đỉnh: x = -b/2a = 2

⇒ y(2) = -4 + 8 - 5 = -1; max y = max(-5; -2; -1) = -1.

Cách khác: Vì a = -1 nên parabol y = -x2 + 4x - 5 đạt cực đại tại đỉnh (2; -1). Vì vậy GTLN của hàm số trên đoạn [0;3] là y(2) = -1

26 tháng 2 2018

Đáp án: A.

Ta có y(0) = -5, y(3) = -2, tọa độ đỉnh: x = -b/2a = 2

⇒ y(2) = -4 + 8 - 5 = -1; max y = max(-5; -2; -1) = -1.

Cách khác: Vì a = -1 nên parabol y = - x 2  + 4x - 5 đạt cực đạt tại đỉnh (2; -1). Vì vậy giá trị lớn nhất của hàm số trên đoạn [0;3] là y(2) = -1.

9 tháng 6 2019
NV
13 tháng 6 2021

\(y'=3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

a. Trên [-4;4] ta có: 

\(y\left(-4\right)=-41\) ; \(y\left(-1\right)=40\) ; \(y\left(3\right)=8\) ; \(y\left(4\right)=15\)

\(\Rightarrow y_{min}=-41\) ; \(y_{max}=40\)

b. Trên [0;5] ta có:

\(y\left(0\right)=35\) ; \(y\left(3\right)=8\)\(y\left(5\right)=40\)

\(\Rightarrow y_{max}=40\) ; \(y_{min}=8\)