Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Xét hàm số f(x) = x 3 - 3 x + m .
Để GTNN của hàm số y = x 3 - 3 x + m 2 trên đoạn [-1;1] bằng 1 thì hoặc
Ta có
=> f(x) nghịch biến trên [-1;1]
Suy ra và
Trường hợp 1:
Trường hợp 2:
Vậy tổng các giá trị của tham số m là 0.
+ Ta có đạo hàm : y= 3x2- 3 và y’ =0 khi và chỉ khi x= 1 hoặc x= -1 .
+ Hàm số đồng biến trên khoảng ( 1; + ∞) .
+ Trên D= [m+1; m+ 2], với m> 0 ,
ta có : M i n [ m + 1 ; m + 2 ] y = ( m + 1 ) 3 - 3 ( m + 1 ) + 1
Ycbt min y< 3 hay m3+ 3m2-4< 0
Suy ra ( m-1) (m+ 2) 2) < 0
Khi đó; m< 1 và m≠- 2
+ Kết hợp điều kiện . Suy ra: 0< m< 1.
Chọn A.
Chọn D
y = f(x) = - x 3 - 3 x 2 + m
Ta có:
f(-1) = m - 2; f(0) = m; f(1) = m - 4;
Ta thấy Suy ra yêu cầu bài toán
Ta có 2sin4x+ cos2x+ 3 = 2sin4x- sin2x+ 4.
Đặt t= sin2x; 0≤ t= sin2 t ≤1
Xét hàm số f( t) = 2t4- t2+ 4 liên tục trên đoạn [0;1]
Có đạo hàm f’ (t) = 8t3-2t= 2t( 4t2-1)
Trên khoảng (0;1) phương trình f’ (t) =0 khi và chỉ khi t= 1/2
Ta có: f(0) = 4; f(1/ 2) = 31/ 8 và f( 1) = 5
Vậy
m i n t ∈ [ 0 , 1 ] f ( t ) = 31 8 t ạ i t = 1 / 2 ⇒ m i n R y = 31 8 k h i sin 2 x = 1 2 ⇔ cos 2 x = 0 ⇔ x = π 4 + k π 2
Chọn D.