Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thị Thùy Dung - Toán lớp 9 | Học trực tuyến
Bạn tham khảo
\(y=\frac{3}{-\left(x-2\right)^2-4}\ge-\frac{3}{4}\)
Dấu "=" xảy ra khi \(x=2\)
\(y=\frac{3-4x}{x^2+1}=\frac{x^2-4x+4}{x^2+1}-1=\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)
\(\Rightarrow y_{min}=-1\) khi \(x=2\)
\(y=\frac{4\left(x^2+1\right)-4x^2-4x-1}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)
\(y_{max}=4\) khi \(x=-\frac{1}{2}\)
b/\(y=\frac{4x^2+6x+10}{x^2+2x+3}\Leftrightarrow\left(y-4\right)x^2+2\left(y-3\right)x+3y-10=0\)
\(\Delta'=\left(y-3\right)^2-\left(y-4\right)\left(3y-10\right)=-2y^2+16y-31\ge0\)
\(\Rightarrow\frac{8-\sqrt{2}}{2}\le y\le\frac{8+\sqrt{2}}{2}\)
Chắc bạn ghi nhầm số nào đó nên kết quả rất xấu
Câu c làm tương tự
a) Đặt \(t=\left|2x-\dfrac{1}{x}\right|\Leftrightarrow t^2=\left(2x-\dfrac{1}{x}\right)^2=4x^2-4+\dfrac{1}{x^2}\Leftrightarrow t^2+4=4x^2+\dfrac{1}{x^2}\) ĐK \(t\ge0\)
từ có ta có pt theo biến t : \(t^2+4+t-6=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|2x-\dfrac{1}{x}\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{x}=1\\2x-\dfrac{1}{x}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
c: TH1: x>0
Pt sẽ là \(\dfrac{x^2-1}{x\left(x-2\right)}=2\)
=>2x^2-4x=x^2-1
=>x^2-4x+1=0
hay \(x=2\pm\sqrt{3}\)
TH2: x<0
Pt sẽ là \(\dfrac{x^2-1}{-x\left(x-2\right)}=2\)
=>-2x(x-2)=x^2-1
=>-2x^2+4x=x^2-1
=>-3x^2+4x+1=0
hay \(x=\dfrac{2-\sqrt{7}}{3}\)
b:
TH1: 2x^3-x>=0
\(4x^4+6x^2\left(2x^3-x\right)+1=0\)
=>4x^4+12x^5-6x^3+1=0
\(\Leftrightarrow x\simeq-0.95\left(loại\right)\)
TH2: 2x^3-x<0
Pt sẽ là \(4x^4+6x^2\left(x-2x^3\right)+1=0\)
=>4x^4+6x^3-12x^5+1=0
=>x=0,95(loại)