Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)
*TH1: Nếu x-2y = 5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)
*TH2: Nếu x-2y = -5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)
Vậy giá trị nhỏ nhất của 3x - 2z là -57.
2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)
Dấu "=" xảy ra khi x = 0.
a) \(A=x^4+3x^2+2\)
Ta có: \(x^4\ge0\forall x\) và \(3x^2\ge0\forall x\Rightarrow x^4+3x^2\ge0\forall x\)
\(\Rightarrow A=x^4+3x^2+2\ge2\forall x\) <=> Có GTNN là 2 khi x = 0
Vậy AMin = 2 tại x = 0
b) \(B=\left(x^4+5\right)^2\)
Ta có : \(x^4\ge0\forall x\Leftrightarrow x^4+5\ge5\forall x\)
\(\Rightarrow B=\left(x^4+5\right)^2\ge5^2=25\forall x\) <=> Có GTNN là 25 tại x = 0
Vậy BMin = 25 tại x = 0
\(C=\left(x-1\right)^2+\left(y+2\right)^2\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall x\end{cases}}\) nên \(C=\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\) <=> Có GTNN là 0 tại \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy CMin = 0 tại x=1;y=-2
a, Vì \(x^4\ge0;3x^2\ge0\)
=> \(x^4+3x^2\ge0\)
=> \(A=x^4+3x^2+2\ge2\)
Dấu "=" xảy ra khi x=0
Vậy MinA = 2 khi x=0
b, Vì \(x^4\ge0\Rightarrow x^4+5\ge5\Rightarrow B=\left(x^4+5\right)^2\ge25\)
Dấu "=" xảy ra khi x = 0
Vậy MInB = 25 khi x=0
c, Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow C=\left(x-1\right)^2+\left(y+2\right)^2\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy MinC = 0 khi x = 1,y = -2
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
bài 1 :
a) vì x + 1,5 luôn lớn hơn hoặc bằng 0 mà để x+1,5 đạt giá trị nhỏ nhất => x + 1,5 = 0=> x=-1,5
b) vì x- 2 luôn lớn hơn hoặc bằng 0 mà để x-2 - 9,10 đạt gtri nhỏ nhất => x- 2 = 0=> x=2
Câu 1 : Bài giải
a, \(\text{ }\text{Do }\left|x+1,5\right|\ge0\) Dấu " = " xảy ra khi \(x+1,5=0\text{ }\Rightarrow\text{ }x=-1,5\)
\(\Rightarrow\text{ }Min\text{ }\left|x+1,5\right|=0\text{ khi }x=-1,5\)
b, \(\left|x-2\right|-9,10\) đạt GTNNN khi \(\left|x-2\right|\) đạt GTNN
Mà \(\left|x-2\right|\ge0\)Dấu " = " xảy ra khi \(x-2=0\) \(\Rightarrow\text{ }x=2\)
\(\Rightarrow\text{ }\left|x-2\right|-9,10\ge-9,10\)
\(\text{Vậy }Min\text{ }\left|x-2\right|-9,10=-9,10\text{ khi }x=2\)
Câu 2 : Bài giải
a, Do \(-\left|2x-1\right|\le0\) Dấu " = " xảy ra khi \(-\left|2x-1\right|=0\text{ }\Rightarrow\text{ }2x-1=0\text{ }\Rightarrow\text{ }x=\frac{1}{2}\)
Vậy \(Max\text{ }-\left|2x-1\right|=0\text{ khi }x=\frac{1}{2}\)
b, Do \(4-\left|5x+3\right|\le4\text{ }\)
Dấu " = " xảy ra khi \(4-\left|5x+3\right|=4\text{ }\Rightarrow\text{ }\left|5x+3\right|=0\text{ }\Rightarrow\text{ }5x+3=0\text{ }\Rightarrow\text{ }x=-\frac{3}{5}\)
\(\text{Vậy }Max\text{ }4-\left|5x+3\right|=4\text{ khi }x=-\frac{3}{5}\)
c, \(\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\) Dấu " = " xảy ra khi \(\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ }\Rightarrow\text{ }\left|x+3\right|=0\text{ }\Rightarrow\text{ }x+3=0\text{ }\Rightarrow\text{ }x=-3\)
\(\text{Vậy }Max\text{ }\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ khi }x=-3\)
\(x^4+3x^2-4\)
\(=x^4+2.x^2.\frac{3}{2}+\frac{9}{4}-\frac{25}{4}\)
\(=\left(x^2+\frac{3}{2}\right)^2-\frac{25}{4}\le\frac{-25}{4}\)
MIN = \(\frac{-25}{4}\Leftrightarrow x^2+\frac{3}{2}=0\Rightarrow x^2=\frac{-3}{2}\)(Vô lý )
Vậy Giá trị trên ko có MIN