K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 6 2024

Biểu thức này không có min và max bạn nhé. Bạn xem lại đề. 

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

14 tháng 8 2016

1/ B = (x+y)((x+y)- 3xy)+(x+y)- 2xy = 2 - 5xy = 2 - 5x(1-x)=5x- 5x + 2 = (x√5 - √5 /2)+3/4 >= 3/4 

Đạt GTNN là 3/4 khi x=y=1/2

2/ P = xy = x(6-x)=-x+6x = 9 - (x-3)2 <=9 

GTLN là 9 khi x=y=3

5 tháng 7 2016

1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)

     =\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)

     =\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1

Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1

2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)

      =\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)

Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)

20 tháng 7 2019

\(\text{a)}\left(2x-1\right)^2+x+2\)

\(=4x^2-4x+1+x+2\)

\(=4x^2-3x+3\)

\(=\left(4x^2-3x+\frac{9}{16}\right)+\frac{39}{16}\)

\(=\left(2x+\frac{3}{4}\right)^2+\frac{39}{16}\)

\(\text{Vì}\left(2x-\frac{3}{4}\right)^2\ge0\)

\(\text{nên }\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Vậy \(GTNN=\frac{39}{16}\),dấu bằng xảy ra khi \(x=\frac{3}{8}\)

\(\text{b)}4-x^2+2x\)

\(=\left(-x^2+2x-1\right)+5\)

\(=-\left(x^2-2x+1\right)+5\)

\(=-\left(x-1\right)^2+5\)

\(\text{Vì }-\left(x-1\right)^2\le0\)

\(\text{nên }-\left(x-1\right)^2+5\le5\)

Vậy \(GTLN=5\), dấu bằng xảy ra khi \(x=1\)

\(\text{c)}4x-x^2\)

\(=\left(-x^2+4x-4\right)+4\)

\(=-\left(x^2-4x+4\right)-4\)

\(=-\left(x-4\right)^2-4\)

\(\text{Vì }-\left(x-4\right)^2\le0\)

\(\text{nên }-\left(x-4\right)^2-4\le-4\)

Vậy \(GTLN=-4\), dấu  bằng xảy ra khi \(x=4\)

\(a,\left(2x-1\right)^2+\left(x+2\right)=4x^2-4x+1+x+2\)

\(=4x^2-3x+3\)

\(=4x^2-2.2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+3\)

\(=\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Dấu bằng xảy ra khi \(2x-\frac{3}{4}=0\Rightarrow x=\frac{3}{8}\)

Vậy \(x=\frac{3}{8}\)thì biểu thức đạt giá trị nhỏ nhất là \(\frac{39}{16}\)

\(b,4-x^2+2x=-\left(x^2-2x-4\right)\)

\(=-\left(\left(x-2\right)^2-8\right)\)

\(\left(x-2\right)^2-8\ge-8\)

\(-\left(\left(x-2\right)^2-8\right)\le8\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy \(x=2\)thì biểu thức đạt giá trị lớn nhất là 8 

\(c,4x-x^2=-\left(x^2-4x\right)\)

\(=-\left(\left(x-2\right)^2-4\right)\)

\(\left(x-2\right)^2-4\ge-4\)

\(\Rightarrow-\left(\left(x-2\right)^2-4\right)\le4\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của biểu thức là 4 khi x = 2

14 tháng 8 2016

1) Ta có: \(\left(x-3\right)^2\ge0\)

=> \(-17-\left(x-3\right)^2\le-17\)với mọi x

Dấu "=" xảy ra khi và chỉ khi (x - 3)2 = 0

<=> x - 3 = 0

<=> x = 3

Vậy GTLN của -17 - (x - 3)2 là -17 khi và chỉ khi x = 3

2) Ta có: \(\left(x-1\right)^2\ge0\)với mọi x

=> \(-9+\left(x-1\right)^2\ge-9\)

Dấu "=" xảy ra khi và chỉ khi (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

Vậy GTNN của -9 + (x - 1)2 là -9 khi và chỉ khi x = 1 

14 tháng 8 2016

a. Vì (x-3)^2 luôn > hoặc = 0 với mọi x. nên -17-(x-3)^2<=-17với mọi x GTLN của -17-(x-3)^2 là -17 khi (x-3)^2=0. x-3 =0. x=3

b. Vì (x-1)^2>=0 với mọi x. nên -9+(x-1)^2 >= -9 với mọi xGTNN của -9+(x-1)^2 là -9 khi (x-1)^2 =0  khi x-1=0 x=1

23 tháng 8 2020

\(A=5-8x+x^2=-8x+x^2+6-11\)

\(=\left(x-4\right)^2-11\)

Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy Amin = - 11 <=> x = 4

23 tháng 8 2020

\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)

\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Bmax = 9 <=> x = - 1