K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

avata của bn đẹp zai quá

19 tháng 1 2018

cau len mang gi hinh anh cua kỉito la duoc

29 tháng 10 2015

Ta có |x-1| >=0

=> -2|x-1| =< 0

=> -2|x-1| - 7 =< 0 - 7

=> P =< -7

Dấu "=" xảy ra <=> |x-1| = 0

                        => x-1 = 0

                             x = 0 + 1

                             x = 1

Vậy Pmax = -7 tại x = 1

28 tháng 7 2019

ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x

=> MinA= \(\frac{1}{2}\)\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)

a: \(A=\left|x+1\right|+5\ge5\forall x\)

Dấu '=' xảy ra khi x=-1

b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)

Dấu '=' xảy ra khi x=0

24 tháng 2 2019

x+y=1

<=> x=1-y

<=>P=(1-y)y=\(y-y^2\)

<=>P=\(\frac{1}{4}-\left(y^2-y+\frac{1}{4}\right)\)

<=>P=\(\frac{1}{4}-\left(y-\frac{1}{2}\right)^2\le\frac{1}{4}\)

=>Max của P=\(\frac{1}{4}\)<=>y=\(\frac{1}{2}\)

24 tháng 2 2019

x+y=1

\(\Rightarrow x=1-y\)

\(\Rightarrow P=x.y=\left(1-y\right).y=y-y^2=-\left(y^2-y\right)\)

\(\Rightarrow P=-\left(y^2-2.y.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)

\(\Rightarrow P=-\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)

\(\Rightarrow P=-\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì :\(\left(y-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-\left(y-\frac{1}{2}\right)^2\le0\)

\(\Rightarrow P\le\frac{1}{4}\)

\(\Rightarrow GTLN\)của\(P=\frac{1}{4}\)khi : \(y=\frac{1}{2}\)

\(\Rightarrow x=1-\frac{1}{2}=\frac{1}{2}\)