\(B=xyz\left(x+y\right)\left(y+z\right)\left(z+x\right)\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài này = 8 ak

9 tháng 3 2016

\(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\)

\(\Leftrightarrow xyz\le\frac{1}{27}\left(1\right)\)

\(\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\le\frac{2\left(x+y+z\right)}{3}=\frac{2}{3}\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\frac{8}{27}\left(2\right)\)

Từ (1);(2) =>k=\(\frac{8}{729}\Rightarrow9^3\cdot k=8\)

Dấu = xảy ra khi x=y=z=1/3

Cho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nha

28 tháng 10 2020

a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)

Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)

Vật bất đẳng thức được chứng minh

Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)

NV
3 tháng 5 2020

Câu 2:

Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D

\(x^2+y^2+z^2+xyz=4\)

\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)

\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)

Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)

\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)

\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)

\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)

\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)

\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)

NV
3 tháng 5 2020

Câu 1:

\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)

\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)

\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)

\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)

\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)

(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

22 tháng 6 2017

thay xyz=(4-x-y-z)2vào

10 tháng 9 2018

Ta có \(x+y+z+\sqrt{xyz}=4\Rightarrow4x+4y+4z+4\sqrt{xyz}=16\)

Ta lại có \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{x\left(4x+4\sqrt{xyz}+yz\right)}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=\sqrt{\left(2x+\sqrt{xyz}\right)^2}=2x+\sqrt{xyz}\)

Tương tự \(\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz}\)

\(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)

Suy ra \(P=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}=2x+2y+2z+2\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2.4=8\)

26 tháng 5 2017

bạn chỉ cần cố gắng là làm được

26 tháng 5 2017

qui đồng đy :v

16 tháng 9 2015

Từ giả thiết \(4x+4y+4z+4\sqrt{xyz}=16\to4x+4\sqrt{xyz}+yz=16-4\left(y+z\right)+yz=\left(4-y\right)\left(4-z\right)\). Suy ra \(\left(4-y\right)\left(4-z\right)=\left(2\sqrt{x}+\sqrt{yz}\right)^2\to\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)=2x+\sqrt{xyz}\)

Tương tự ta thiết lập hai đẳng thức nữa \(\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz},\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}.\)  

Cộng lại ta được

\(A=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2\times4=8.\) 

Vậy \(A=8.\)

19 tháng 10 2017

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

23 tháng 8 2017

2/ \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+zx\)

\(\Leftrightarrow x+y+z-xy-yz-zx+xyz-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=1\end{cases}}\)

\(\Rightarrow P=0\)

23 tháng 8 2017

\(x^2-\sqrt{x+5}=5\)

\(\Leftrightarrow x^2-5=\sqrt{x+5}\)

\(\Leftrightarrow x^4-10x^2+25=x+5\)

\(\Leftrightarrow x^4-10x^2-x+20=0\)

\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)