K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

17 tháng 10 2019

\(a,x=7-4\sqrt{3}=4-2.2\sqrt{3}+3\) (Thỏa mãn ĐKXĐ)

\(=\left(2-\sqrt{3}\right)^2\)

\(B=\frac{2}{\sqrt{x}-2}=\frac{2}{\sqrt{\left(2-\sqrt{3}\right)^2}-2}\)

\(=\frac{2}{2-\sqrt{3}-2}=-\frac{2\sqrt{3}}{3}\)

\(b,P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}:\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

17 tháng 10 2019

\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\)

\(\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow3\sqrt{x}+6=4\sqrt{x}+4\)

\(\Leftrightarrow6-4=4\sqrt{x}-3\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(ko thỏa mãn ĐKXĐ)

=>pt vo nghiệm

d,\(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\frac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow-4\sqrt{x-1}+28=-6x+10\sqrt{5x}\)

\(\Leftrightarrow x=5\)

11 tháng 4 2021

a) Thay x = 25 vào biểu thức A , ta có 

\(A=\frac{5-2}{5-1}=\frac{3}{4}\)

b) \(B=\frac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B =\frac{x+1+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B =\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

11 tháng 4 2021

a, Ta có : \(x=25\Rightarrow\sqrt{x}=5\)

Thay vào biểu thức A ta được : 

\(A=\frac{5-2}{5-1}=\frac{3}{4}\)

Vậy với x = 25 thì A = 3/4 

b, Với \(x\ge0;x\ne1\)

 \(B=\frac{x-5}{x-1}-\frac{2}{\sqrt{x}+1}+\frac{4}{\sqrt{x}-1}\)

\(=\frac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{x-1}=\frac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{x-1}\)

\(=\frac{x+1+2\sqrt{x}}{x-1}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}\pm1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

c, Ta có P = A/B hay \(P=\frac{\sqrt{x}-2}{\sqrt{x}-1}.\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

\(\sqrt{P}< \frac{1}{2}\)hay \(\sqrt{\frac{\sqrt{x}-2}{\sqrt{x}+1}}< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< \frac{1}{4}\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}-\frac{1}{4}< 0\Leftrightarrow\frac{4\sqrt{x}-8-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\)

\(\Rightarrow3\sqrt{x}-9>0\)do \(4\left(\sqrt{x}+1\right)>0\)

\(\Leftrightarrow3\sqrt{x}>9\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)

1. Cho hai biểu thức A=\(\frac{4\sqrt{x}}{x-1}\) B = \(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{1}}{\sqrt{x}-1}+\frac{2}{x-1}\)với x ≥ 0, x≠1.a) Tính giá trị của A khi x =4b) Rút gọn các biểu thức Bc) Tìm các giá trị của x để A = 322. Cho biểu thức A=\(\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\) với x ≥ 0, x≠1a) Rút gọn Ab) Tính giá trị của A khi x = 6 +...
Đọc tiếp

1. Cho hai biểu thức A=\(\frac{4\sqrt{x}}{x-1}\) B = \(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{1}}{\sqrt{x}-1}+\frac{2}{x-1}\)với x ≥ 0, x≠1.

a) Tính giá trị của A khi x =4

b) Rút gọn các biểu thức B

c) Tìm các giá trị của x để A = 32

2. Cho biểu thức A=\(\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\) với x ≥ 0, x≠1

a) Rút gọn A

b) Tính giá trị của A khi x = 6 + 2√5

c) Tìm x để A = 7

3. Cho biểu thức A =\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\) B=  \(\sqrt{x}-\frac{x+2\sqrt{x}+4}{\sqrt{x}+3}\) với x > 0, x ≠ 4.

a) Tính giá trị của A khi x = 9

b) Rút gọn biểu thức B

c) Tìm x để \(A.B=\frac{1}{3}\)

4. Cho hai biểu thức A =\(\frac{2\sqrt{x}}{x-9}-\frac{2}{\sqrt{x+3}}\) và B = \(\frac{3}{x-3\sqrt{x}}\), với x > 0, x ≠ 9

a) Tính giá trị của B khi x = 25

b) Rút gọn biểu thức A

c) Tìm giá trị của x để \(\frac{B}{A}=\frac{2\sqrt{x}+1}{2}\)

0
15 tháng 10 2016

a) Biến đổi vế trái ta có:

\(x^2+x\sqrt{3}+1=x^2+2\cdot x\cdot\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}=VP\)

Vậy đẳng thức trên được chứng minh

b) \(x^2+x\sqrt{3}+1=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)

Vì: \(\left(x+\frac{\sqrt{3}}{2}\right)^2\ge0\)

=> \(\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Vậy GTNN của biểu thức trên là \(\frac{1}{4}\) khi \(x=-\frac{\sqrt{3}}{2}\)

3 tháng 7 2017

2/ Giả sử:

\(\sqrt{n+2}-\sqrt{n+1}>\sqrt{n+1}-\sqrt{n}\)

\(\Leftrightarrow\sqrt{n+2}+\sqrt{n}>2\sqrt{n+1}\)

\(\Leftrightarrow2n+2+2\sqrt{n^2+2n}>4n+4\)

\(\Leftrightarrow\sqrt{n^2+2n}>n+1\)

\(\Leftrightarrow n^2+2n>n^2+2n+1\)

\(\Leftrightarrow0>1\) (sai)

Vậy \(\sqrt{n+2}-\sqrt{n+1}< \sqrt{n+1}-\sqrt{n}\)