Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
a) \(A=2x^2+2x+3\)
\(A=2\left(x^2+x+\frac{3}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
b) Biến đổi mẫu thức :
\(3x^2+4x+15\)
\(=3\left(x^2+\frac{4}{3}x+5\right)\)
\(=3\left[x^2+2\cdot x\cdot\frac{2}{3}+\left(\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left[\left(x+\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}\)
\(B=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\ge\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{2}{3}=0\Leftrightarrow x=\frac{-2}{3}\)
c) \(C=-x^2+2x-2\)
\(C=-\left(x^2-2x+2\right)\)
\(C=-\left(x^2-2\cdot x\cdot1+1^2+1\right)\)
\(C=-\left[\left(x-1\right)^2+1\right]\)
\(C=-1-\left(x-1\right)^2\le-1\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Biến đổi mẫu thức tương tự câu b)
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\cdot\left(\frac{x}{\left|x\right|}-\frac{y}{\left|y\right|}\right)\)
TH1: \(x,y>0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+1\cdot\left(1-1\right)=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+\left(-1\right)\cdot\left(1-1\right)=1\)
TH2: \(x,y< 0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1+1\cdot\left[-1-\left(-1\right)\right]=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1\)
TH3: \(x>0;y< 0\): \(P=\frac{xy}{-xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{-y}\right)=-1+1\cdot\left(1+1\right)=1\)
TH4: \(x< 0;y>0\): \(P=\frac{xy}{-xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{y}\right)=-1+\left(-1\right)\cdot\left(-1-1\right)=1\)
Nói chung với mọi x, y thì P = 1
a )\(A=2x^2-8x-10=2\left(x^2-4x-5\right)=2\left[\left(x^2-4x+4\right)-9\right]\)
\(=2\left[\left(x-2\right)^2-9\right]=2\left(x-2\right)^2-18\)
Vì \(2\left(x-2\right)^2\ge0\forall x\) nên \(A=2\left(x-2\right)^2-18\ge-18\forall x\)
Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là - 18 tại x = 2
b ) \(B=9x-3x^2=-3\left(x^2-3x\right)=-3\left[\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}\right]\)
\(=-3\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]=-3\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)
Vì \(\cdot3\left(x-\dfrac{3}{2}\right)^2\le0\forall x\) nên \(B=-3\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\le\dfrac{27}{4}\)
Dấu "=" xảy ra <=> \(-3\left(x-\dfrac{3}{2}\right)^2=0\Rightarrow x=\dfrac{3}{2}\)
Vậy GTLN của B là \(\dfrac{27}{4}\) tại x = \(\dfrac{3}{2}\)
Tìm giá trị lớn nhất:
A=(x-1).(x-4).(x-5).(8-x)
B=\(2x.\left(4-2x\right).\left(4x^2-8x+6\right)+2018\)
\(A=\dfrac{1}{-x^2+2x-2}\)
A min \(\Leftrightarrow\dfrac{1}{A}\)max
ta có \(\dfrac{1}{A}=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x-1\right)^2-1\le-1\)
\(\dfrac{1}{A}\)max= -1 tại x=1
=> A min = -1 tại x=1
\(B=\dfrac{2}{-4x^2+8x-5}\) ( phải là -4x2 nha bn)
B min \(\Leftrightarrow\dfrac{1}{B}\) max
ta có \(\dfrac{1}{B}=\dfrac{-4x^2+8x-5}{2}=\dfrac{-\left(4x^2-8x+5\right)}{2}=\dfrac{-\left(2x-4\right)^2+11}{2}=\dfrac{\left(-2x-4\right)^2}{2}+\dfrac{11}{2}\le\dfrac{11}{2}\)
\(\dfrac{1}{B}\)max=\(\dfrac{11}{2}\) tại x=2
\(\Rightarrow B\) min = \(\dfrac{1}{\dfrac{11}{2}}=\dfrac{2}{11}\) tại x=2
\(A=\dfrac{3}{2x^2+2x+3}=\dfrac{3}{2\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{5}{2}}=\dfrac{3}{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}\)
A max \(\Leftrightarrow\dfrac{1}{A}\) min
\(\Leftrightarrow\dfrac{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{5}{6}\ge\dfrac{5}{6}\)
\(\dfrac{1}{A}\) min = \(\dfrac{5}{6}\)tại x= \(-\dfrac{1}{2}\)
\(\Rightarrow A\)max = \(\dfrac{6}{5}\) tại x= \(-\dfrac{1}{2}\)
B\(=\dfrac{5}{3x^2+4x+15}=\dfrac{5}{3.\left(x^2+\dfrac{4}{3}x+5\right)}=\dfrac{5}{3\left(x^2+2.x.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{41}{9}\right)}=\dfrac{5}{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}\)
B max \(\Leftrightarrow\dfrac{1}{B}\) min
\(\Leftrightarrow\dfrac{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}{5}=\dfrac{3\left(x+\dfrac{2}{3}\right)^2}{5}+\dfrac{41}{15}\ge\dfrac{41}{15}\)
\(\dfrac{1}{B}\) min = \(\dfrac{41}{15}\) tại x=\(-\dfrac{2}{3}\)
=> \(B\) max = \(\dfrac{15}{41}\) tại x=\(-\dfrac{2}{3}\)
Đây chỉ là gợi ý !! bn pải tự lí luận nha
tik
Ta có
\(-4x^2+8x-5=-4\left(x^2-2x+1\right)-1=-1-4\left(x-1\right)^2\)
Nhận thấy \(-4\left(x-1\right)^2\le0\forall x=>-1-4\left(x-1\right)^2\le-1\forall x\)
Dấu "=" xảy ra khi x-1=0=> x=1
Vậy GTLN của -4x2+8x-5 là -1 khi x=1
Đặt A = 8x - 2x2 + 5
= -2x2 + 8x + 5
= -2( x2 -4x + 4 ) + 13
= -2(x - 2 )2 + 13
Ta có : (x-2)2 \(\ge\) 0
<=> -2(x-2)2 \(\le\) 0
<=> -2(x - 2 )2 + 13 \(\le\)13
Vậy : Amax = 13 , [ khi (x-2)^2 = 0 khi x = 2 ]
\(8x-2x^2+5=-2\left(x^2-4x+4\right)+13\le13\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)
vậy max =13 tại x=2