K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

Ta có:

2X+y=128=27 => x+y=7  (1)

32X-y=512 

<=> 25(x-y)=29 

=> 5(x-y)=9 => x-y=9/5

X=(7+9/5):2=44/10=22/5

y=7-22/5=13/5

13 tháng 1 2019

\(x^2+y^2=325\)

<=>  \(\left(x+y\right)^2-2xy=325\)

Đặt:  \(x+y=a;\)\(xy=b\)Khi đó ta có:

\(a-b=155\)   (1)

và  \(a^2-2b=325\)

Từ (1) ta có:   \(b=a-155\) thay vào (2) ta được:

\(a^2-2\left(a-155\right)=325\)

giải ra tìm được:  \(\orbr{\begin{cases}a=5\\a=-3\end{cases}}\)  =>  \(\orbr{\begin{cases}a=5;b=-150\\a=-3;b=-158\end{cases}}\)

TH1:  \(\hept{\begin{cases}a=5\\b=-150\end{cases}}\) ,=>  \(\hept{\begin{cases}x+y=5\\xy=-150\end{cases}}\)

\(x^2+y^2=325\) 

<=>   \(\left(x-y\right)^2+2xy=325\)

<=>  \(\left(x-y\right)^2=325-2xy=625\)

<=>  \(\left|x-y\right|=25\)

=>  \(\left|x^3-y^3\right|=\left|\left(x-y\right)\left(x^2+y^2+xy\right)\right|=\left|x-y\right|\left(x^2+y^2+xy\right)=4375\)

TH2: bn tự lm tiếp nhé

2 tháng 5 2020

2) \(A=\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\)

\(=2\left(x^2-xy+y^2\right)+2xy\)

\(=2\left(x^2+y^2\right)\ge\left(x+y\right)^2=4\)(BĐT Bunhiacopxki)

=> A \(\ge4\)Dấu "=" xảy ra <=> x=y=1

21 tháng 3 2019

\(x^2+y^2+z^2=12\)

\(\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)=12\)

\(\Leftrightarrow36-2\left(xy+yz+zx\right)=12\)

\(\Leftrightarrow xy+yz+zx=12\)

\(\Rightarrow x^2+y^2+z^2=xy+yz+zx\left(=12\right)\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Mỗi hạng tử bên VT đều > 0 nên dấu "=" khi x = y = z

mà x + y + z = 6 => x = y = z = 2

8 tháng 8 2015

x2-y=y2-x

<=>(x2-y2)+(x-y)=0

<=>(x-y)(x+y)+(x-y)=0

<=>(x-y)(x+y+1)=0

*)Nếu x-y=0<=>x=y

Tính a theo x ta có

A=x3+x3+3x2(x2+x2)+6x4(x+x)

=2x3+6x4+12x5

*)Nếu x+y+1=0

<=>x=-(y+1)

Tính A theo y ta có

A=(-y-1)3+y3+3(y-1)y[(-y-1)2+y2]+6(-y-1)2y2(-y-1+y)

cái này bạn tự tính

22 tháng 7 2018

Dễ mà bạn !

19 tháng 3 2017

Dùng bất đẳng thức Bu-nhi-a là ra rồi

18 tháng 3 2017

(X+y)2=x2+y2+2xy

Lại có: 2xy <= x2+y2

=> (x+y)2 <= x2+y2+x2+y2=2.(x2+y2)=2.1=2

=> Giá trị lớn nhất của (x+y)2 là 2