\(\dfrac{2x+1}{5}\)=\(\dfrac{3y-2}{7}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y+1-2}{5+7}=\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)

\(2x+3y-1\ne0\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Vậy x = 2

19 tháng 3 2017

ta có: \(\dfrac{2x+1}{5}\) =

\(\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}=\dfrac{2x+1+3y-2}{5+7}=\dfrac{2x+3y-1}{12}\)

=>6x=12

=>x=2

18 tháng 11 2022

a: =>x+1/2=5

=>x=9/2

b: =>(x-1)^2=900

=>x-1=30 hoặc x-1=-30

=>x=-29 hoặc x=31

17 tháng 11 2017

Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x

=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x

=> 2x+3y-1 / 12 = 2x+3y-1 / 6x

=> 12 = 6x => x =2

28 tháng 5 2018

\(a,Đặt\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\\ A=\dfrac{2x-3y}{x-5y}=\dfrac{2\cdot2k-3\cdot3k}{2k-5\cdot3k}\\ =\dfrac{4k-9k}{2k-15k} \\ =\dfrac{5k}{13k}\\ =\dfrac{5}{13}\)

\(b,Thayx-y=7vàoB,tacó:\\ B=\dfrac{2x+7}{3x-y}+\dfrac{2y-7}{3y-x}\\ =\dfrac{2x+x-y}{3x-y}+\dfrac{2y-x+y}{3y-x}\\ =\dfrac{3x-y}{3x-y}+\dfrac{3y-x}{3y-x}\\ =1+1\\ =2\)

\(c,Đặt\dfrac{x}{3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\\ C=\dfrac{5x^2+3y^2}{10x^2-3y^2}\\ =\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\\ =\dfrac{45k^2+75k^2}{90k^2-75k^2}\\ =\dfrac{120k^2}{15k^2}\\ =8\)

\(d,\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=k\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\\ D=\dfrac{5a-b}{3a-2b}\\ =\dfrac{5\cdot5k-7k}{3\cdot5k-2\cdot7k}\\ =\dfrac{25k-7k}{15k-14k}\\ =\dfrac{18k}{k}=18\)

\(e,Thayx-y=5vàoE,tacó:\\ E=\dfrac{3x-5}{2x+y}-\dfrac{4y+5}{x+3y}\\ =\dfrac{3x-x+y}{2x+y}-\dfrac{4y+x-y}{x+3y}\\ =\dfrac{2x+y}{2x+y}-\dfrac{3y+x}{x+3y}\\ =1-1=0\)

24 tháng 8 2018

1.

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\end{matrix}\right.\)

\(\Rightarrow x^2-y^2=\left(5k\right)^2-\left(4k\right)^2=25k^2-16k^2=9k^2=4\)

\(\Rightarrow k^2=\dfrac{4}{9}\Rightarrow k=\pm\dfrac{2}{3}\)

\(\circledast k=\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{8}{3}\end{matrix}\right.\)

\(\circledast k=-\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{3}\\y=-\dfrac{8}{3}\end{matrix}\right.\)

2.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+1+3y-2}{5+7}=\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

\(\Rightarrow y=\dfrac{\dfrac{2\cdot2+1}{5}\cdot7+2}{3}=3\)

3.

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Leftrightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\dfrac{95-8+3}{9}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10\cdot4+2}{2}=21\\y=\dfrac{10\cdot9+6}{3}=32\\z=10\cdot4+3=43\end{matrix}\right.\)

24 tháng 6 2018

Giải:

a) \(\dfrac{x}{-4}=\dfrac{-9}{x}\)

\(\Leftrightarrow x.x=-4.\left(-9\right)\)

\(\Leftrightarrow x^2=36\)

\(\Leftrightarrow x=\pm6\)

Vậy ...

b) \(\dfrac{x-1}{-15}=\dfrac{-60}{x-1}\)

\(\Leftrightarrow\left(x-1\right)^2=900\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=31\\x=-29\end{matrix}\right.\)

Vậy ...

d) \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x-1\right)\left(x+4\right)\)

\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)

\(\Leftrightarrow5x-14=3x-4\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=5\)

Vậy ...

4 tháng 1 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}=\dfrac{2x+1+3y-2-2x-3y+1}{5+7-6x}=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)

8 tháng 8 2017

+) Xét \(2x+3y-1=0\) có:

\(\Rightarrow\left\{{}\begin{matrix}2x+1=0\\3y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)

+) Xét \(2x+3y-1\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

\(\Rightarrow y=3\)

Vậy...

8 tháng 8 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+1+3y-2}{5+7}=\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

Thay vào biểu thức, ta có:

\(2.2+\dfrac{1}{5}=\dfrac{3y-2}{7}\Rightarrow1=\dfrac{3y-2}{7}\Rightarrow3y-2=7\)

\(\Rightarrow3y=9\Rightarrow y=3\)

Vậy \(\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)